

Predictive multi-channel flux-driven modelling to optimise ICRH tungsten control in JET

F.J. Casson¹, H. Patten², C. Bourdelle³, S. Breton³, J. Citrin⁴, F. Koechl¹, C. Angioni⁵, Y. Baranov¹, R. Bilato⁵, E.A. Belli⁶, C.D. Challis¹, G. Corrigan¹ A. Czarnecka⁷, O. Ficker⁸, L. Garzotti¹, M. Goniche³, J.P. Graves², T. Johnson⁹, K. Kirov¹, P. Knight¹, E. Lerche^{1,10}, M. Mantsinen¹¹, J. Mylnar⁸, M. Sertoli^{5,1}, M. Valisa¹², and JET contributors^{*}

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

¹ UKAEA, Abingdon, UK ; ² EPFL-SPC, Lausanne, Switzerland; ³ CEA, Saint-Paul-lez-Durance, France; ⁴ DIFFER, Eindhoven, The Netherlands; ⁵ IPP, Garching, Germany; ⁶ General Atomics, San Deigo, USA; ⁷ IPPLM, Warsaw, Poland; ⁸ IPP-CAS, Prague, Czech Republic; ⁹ KTH, Stockholm, Sweden; ¹⁰ LPP-ERM/KMS, Brussels, Belgium; ¹¹ BSC-CNS, Barcelona, Spain; ¹² RFX, Padova, Italy *See the author list of X. Litaudon et al 2017 Nucl. Fusion 57 102001

<u>Need to optimise JET-ILW scenarios against W accumulation</u>

Optimisation of heating against W

Axial Te

- JET-ILW DT scenarios aim at steady high performance (15MW fusion for 5s) [1]
- Scenario development must address 3 connected challenges
 - Maintain tolerable divertor heat loads
 - Control central W accumulation
 - Avoid performance limiting MHD
- Apply state-of-the-art modelling capabilities to guide scenario development

Rotation well predicted with symmetry breaking model

W accumulation driven by neoclassical convection enhanced by rotation

Integrate first-principle models to predict 9 channels self-consistently

- Increased NBI power will accelerate W accumulation [5]
 - Beam energies will be increased to reach maximum power
 - More central power, particle (density peaking), and torque deposition
- ICRH helps most in neoclassical dominated core, both increasing ∇T_{μ} and decreasing ∇n_{μ}
 - Increased turbulent diffusion reduces central density peaking **localised axial ICRH most effective**
 - Predictions consistent with JET observations [8,9]
 - 4MW increase in ICRH compensates 6MW increase in NBI

- Ion heating schemes predicted as most effective on W
 - Ion heating both increases **∇Ti and decreases ∇**n_n
- Specific to JET hybrid scenario: Ti > Te, dominant neoclassical convection (large Mach no ~ 0.7)

Validation of modelling against highest performance hybrid discharge

- Where Ti ~ Te coupled, or turb dominates, electron heating best [12] (e.g. ITER)
- Supporting high-fidelity ICRH model (SCENIC [10,11]) shows
 - He-3 minority scheme achieves larger power density and larger ion heating
 - Resonance within 10cm of axis is optimal; fast ion effects on W transport negligible with FOW

Predictions for DT

- Tritium plasmas have better confinement but earlier W accumulation
 - Inclusion of ETG scales pins Te; i-e collisional energy exchange reduces with mass
 - Increased Ti / Te and ITG stabilisation; specific to plasmas with Ti > Te [14]
 - Improved confinement in DT also gives larger density peaking
- Mitigate with increased density (less central NBI particle deposition)
 - Some cost in performance requires optimisation / integration
 - Access via Increased triangularity / plasma current / pedestal isotope scaling

0.2

80% ion heating

H minority, 2.5%

Ion heating

14 cm HFS

0.4

10 cm LFS

30 cm LFS

4.5 MW

32MW NBI

8 MW ICRH

FUSION ENERGY

Summary

• First-principle models integrated into a powerful multi-channel predictive tool for core plasma

Reproduces observed W accumulation after several confinement times

 Guides scenario development to optimise W control in JET hybrid

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.