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Use condition of Fusion DEMO in-vessel structural material
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Typical phenomena and general expectation
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A common strategy and the near term approach

Materials for advanced performance

Candidate material feasible for design activity

High sink strength materials

v" Minimize irradiation effects by
absorbing various defects by various
high density sinks in material.

These are not yet mature as the
“structural” material for design activity.
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S.J. Zinkle, Annu. Rev. Mater. Res. 44 (2014) 241-267

Reduced Activation Ferritic/Martensitic (RAFM) Steel

Fe - 8 ~9Cr - 1~2W - V, Ta (F82H, EUROFER, etc.)

v These steels have a sound technological background on
their reproducibility and weldability.

v A certain level of irradiation resistance was demonstrated.

v Grain refining and heat treatment can improve the level of
irradiation resistance or recover the degraded properties.

v Irradiation induced property changes of RAFM steels
are not negligible.

It is essential to define how much irradiation
induced property changes are allowed.

But, we have to define this
v' Without (or with a very limited) experience
of the real fusion in-vessel environment.

v For DEMO construction.
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The typical irradiation effects on mechanical properties of RAFM

Irradiation effects observed in fission neutron irradiated F82H
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Hardening and
embrittlement are well-
known as the critical
irradiation effects.

Deformability reduction
which appeared as the loss
of uniform elongation and
the decrease of total
elongation are also
significant.

The data are inherent to ALL RAFM steels
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How to deal with property degradation?

The deterministic design method (Allowable stress design method)

Basic strategy : Prevent plastic collapse by defining allowable stress level

The factor of:
safety has
been defined

empirically.

Characteristic : . : Allowable _ Characteristic strength
load : = :stress Factor of safety

> 4—! Minimum material strength
i) - I
= > A Load a Decrdied | Material Material properties
E g Material || Strength sho.uld haye to be
e Q Strengin i defined with
a O : - sufficient statistical

Degradation of a property Strength, Load reliability.

is conservatively limited

Technical issues

1. Deformability decrease after irradiation.
2. Statistical reliability of irradiation data is limited.
3. “Empirical” approach is not feasible for fusion DEMO in-vessel components.
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Issue 1 : Impacts of deformability reduction
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High deformability (ductility and plastic hardenability) is the
basic presupposition for the allowable stress design method,
to prevent plastic collapse

at the corner of
coolant channels

<. | Apossible flaw
" | Small crack
~ | occasionally observed
.| atthe corner of a
| rectangular tube

» At the highly stress concentrated region of discontinuous parts
» Due to the presence of undetectably small flaws or defects

Local deformation at the tip of a postulated crack

,ﬂ'1lr at the crack tip can be expected
) in highly plastic material.

=) The crack propagation
is not likely to occur.

The crack tip blunting does
not occur due to hardening.

+ Deformability reduced

) The crack propagation
could occur.

2'02 Equivalent plastic strain

Unirradiated F82H Crack blunting and hardening  300°C/20 dpa irrad. F82H
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Issue 1 : Impacts of deformability reduction
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Issue 1 : Impacts of deformability reduction

m& High deformability (ductility and plastic hardenability) is the
paid N

=93 The development of design rule and methodologies for irradiation

Coolant wa

=== damaged fusion in-vessel components, considering the irradiation

15.5 vpa, induced deformability reduction, would be required.

#&##

This kind of phenomena is considered in the Post Construction (PC) code (e.g., 32H
API 579-1/ASME FFS-1), as the degradation of fracture toughness, but the
structure of fusion in-vessel components are not simple, and the expected
loads are complicated.

The crack tip blunting does
not occur due to hardening.

+ Deformability reduced

) The crack propagation
could occur. 7/13
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Issue 2 : Database and statistical reliability

by
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» Most of the irradiation data
consist of 1~3 data points
per condition.

v" The number of irradiation
data is too small to give a
representative value

(average, minimum value)
with a statistical confidence.

» |t is dangerous to assume a
normal distribution to
calculate a representative
value from irradiated material
property data, as the typical
irradiation effects appear as
embrittlement.

Normal distribution

& Weibull distribution.
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Issue 2 : Database and statistical reliability
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Issue 3 : Lack of sufficient empirical evidence
A new strategy : Probability based design method (Reliability design method)

Probability of fracture P = P¢[Strength < Load] = j fs(s) [ J fr (r)dr] ds
0 0
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Issue 3 : Lack of sufficient empirical evidence
A new strategy : Probability based design method (Reliability design method)

Probability of fracture P = P¢[Strength < Load] = j fs(s) U fr (r)dr] ds
0 0

Probability density function of £5) ) orobability density f _ ;
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. - Benefit -
i v/ There is no need to introduce “factor of safety”

in the probability based design method.

v Removal of unnecessary conservatism in design |ESR¢E))
‘ methodologies can be expected. Irradiation

effects on
density function
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Probability of fracture . *© s
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Issues in adopting probability based design method

A great deal of effort is needed to postulate the probability density function of
operation/load conditions of structure and property changes of structural materials.
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How to estimate the fusion n irradiation effects
with a limited number of fusion n irrad. data?

Step 1: Obtain fission n irradiation data distribution ~ Fission f""*%(r, D)
Step 2: Obtain new data s

Step 3: Calculate probability to observe new data, r"“, based on Fission f&'"%(r, D)

Step 4: Estimate fusion n irradiation data distribution Fusion f'"*%(r, D),

By Bayesian inference: Fusion fi7%(r,D) - Fission f47%%(r, D)
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How to estimate the fusion n irradiation effects
with a limited number of fusion n irrad. data?

Step 1: Obtain fission n irradiation data distribution ~ Fission f"*%(r, D)

Step 2: Obtain new data ¥, by fusion neutron source irradiation.

Step 3: Calculate probability to observe new data, r*=%, [1/"““(+"**" D)) based on Fission fi""%% (r, D)
Step 4: Estimate fusion n irradiation data distribution Fusion f£'7%%(r,D),

By Bayesian inference: Fusion f2"%(r,D) « [117“" (v D) - Fission f4"%(r, D)

It'is iImportant to estimate an appropriate function for the original
property data distribution , to Update the function

to for fusion n irradiation data.

Essentialitornave theoreticallunderstandings onirradiation effect to
select an appropriate function type to make Bayesian inference wWork.

[NOTE] This approach is applicable up to “the critical condition” up to which we may
assume fission data is expected to be similar to that of fusion data.




How to postulate the load conditions under DT ?

1. Obtain load distribution f5(S) in a similar environment (JT-60SA, JET, etc.)

2. Observe new load condition 5%, obtained in a real DT environment.

3. Calculate probability to observe load condition, S"%, f<(S™¢"), based on £(S)
4. Postulate load distribution of in-vessel structure under DT operation f5(S5),

By Bayesian inference: DT operation fs(S) < f¢(S™Y) - Similar enviroment fs(S)
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How to postulate the load conditions under DT ?

1. Obtain load distribution f5(S) in a similar environment (JT-60SA, JET, etc.)
2. Observe new load condition S"¢%, obtained in a real DT environment.
3. Calculate probability to observe load condition, $™%, f¢(S™¢"), based on £;(S)

4,
v To define the probability density function of load conditions and to validate

the design method, it is essential to accumulate relevant data* of in-vessel

component tested in non-DT burning plasma machines (JT-60SA etc.)
* loaded stress variation, failure rate, fracture rate, crack initiation/propagation rate, etc.

v Development of inspection methodology for tested (and irradiated)
component is indispensable to endorse this approach and to mitigate the

uncertainty of these estimations.

v ITER DT operation (ITER-TBM, Divertor) is a precious opportunity to update
the function for DEMO operation to secure availability and inspection period.

test 'irad.” ZYVY




summary

The strategy of fusion in-vessel structural material development toward fusion DEMO is
addressed with special emphasis on the lack of irradiation data available and limitations
on confidence levels in concluding on allowable performance limits.

Technical issues under the existing design code regarding irradiation effects were indicated.

» The impact of deformability reduction due to irradiation was discussed.

v Need to develop design rule and methodologies considering the impact of the deformability
and/or fracture toughness reduction.

» The limitation of irradiation data reliability was indicated.

v Required to obtain a reasonable amount of fission neutron irradiation data to define its statistical
nature, in order to estimate the “real” fusion data, up to "the critical irradiation dose level".

» Difficulty to define an appropriate "safety factor" without "empirical” approach, was
suggested.

v A new strategy based on probabilistic approaches was proposed. 13/13
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The strategy of fusion in-vessel structural material development toward fusion DEMO is
addressed with special emphasis on the lack of irradiation data available and limitations
on confidence levels in concluding on allowable performance limits.

Technical issues under the existing design code regarding irradiation effects were indicated.

N The issues and requirements described in this presentation will be the target of
new phase of international collaborations.

Japan - EU : Broader Approach Phase 2

Japan - US : QST/DOE collaboration under the implementing agreement
between MEEXT and DOE
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