
Wide divertor heat-flux width λ_q in ITER from turbulence bifurcation across separatrix C-S Chang et al.

- XGC predictions for λ_q has been well-validated against representative DIII-D, C-Mod, NSTX, and JET data: neoclassical effect is dominant
- The same XGC predicts 6X greater λ_q in full-current (15MA) ITER than extrapolation (λ_q^{Eich}) from present tokamaks:
 - turbulence effect is dominant in 15MA ITER
- λ_q on 1st phase ITER at 5MA agrees with λ_q^{Eich}
 - \rightarrow Wider λ_q^{ITER} (15MA) is not a pure size effect, but a ρ_i /a effect.
- Turbulence across separatrix bifurcates from JET(4.5MA) to ITER(15MA)
 - from "blobs" to "streamers," and
 - from high to low ExB shearing rate.
 - Strong "streamer transport" is seen across separatrix in ITER(15MA) → wider λ_α

