Advances in Runaway Electron Control and Model Validation for ITER

by

C. Paz-Soldan¹ with contributions from:

N. Eidietis,¹ E. Hollmann,² A. Lvovskiy,³ C. Cooper,³ J. Herfindal,⁴ R. Moyer,² D. Shiraki,⁴ K. Thome,¹ P. Aleynikov,⁵ D. Brennan,⁶ L. Carbajal,⁴ D. del-Castillo-Negrete,⁴ O. Embreus,⁷ T. Fulop,⁷ M. Hoppe,⁷ C. Liu,⁶ P. Parks,¹ D. Spong,⁴

¹ General Atomics

² University of California, San Diego

³ Oak Ridge Associated Universities

⁴ Oak Ridge National Laboratory

⁵ Max-Planck Institute, Greifswald

⁶ Princeton Plasma Physics Laboratory

⁷ Chalmers University

Presented at

27th IAEA Fusion Energy Conference Ahmedabad, India

October 22-27, 2018

Pinhole Sightline Pulse-Height Counting Detectors

• REs are formed after a disruption and can damage the first wall

RE Strike on JET C. Reux et al Disruption Wall Unent Strike

time

Current

Plasma

- REs are formed after a disruption and can damage the first wall
- Talk presents experiment and modeling advances for the:

- REs are formed after a disruption and can damage the first wall
- Talk presents experiment and modeling advances for the:
 - 1. Formation Phase: Avoidance

- REs are formed after a disruption and can damage the first wall
- Talk presents experiment and modeling advances for the:
 - 1. Formation Phase: Avoidance
 - 2. Plateau Phase: Mitigation

- REs are formed after a disruption and can damage the first wall
- Talk presents experiment and modeling advances for the:
 - 1. Formation Phase: Avoidance
 - 2. Plateau Phase: Mitigation
- Limited opportunity for empirical tuning of RE mitigation

Validated predictive modeling of RE control is essential

RE Formation Phase Offers the Opportunity to Completely Avoid RE Issues

- 1. Can we predict the initial (seed) RE current?
- 2. Do we have options to avoid the RE plateau phase?

Experimental RE Seed Current of ~ 1 kA Estimated ... Far Away from Hot-Tail Theory Predictions

 Hot-Tail mechanism¹ expected to dominate RE seed production in ITER

¹Smith et al, PoP 2008

Experimental RE Seed Current of ~ 1 kA Estimated ... Far Away from Hot-Tail Theory Predictions

- Hot-Tail mechanism¹ expected to dominate RE seed production in ITER
- Early theory¹ exceeds experimental estimates from pellet ablation light²

Experimental RE Seed Current of ~ 1 kA Estimated ... Far Away from Hot-Tail Theory Predictions

- Hot-Tail mechanism¹ expected to dominate RE seed production in ITER
- Early theory¹ exceeds experimental estimates from pellet ablation light²
- Recent theory³ self-consistently treats plasma cooling with RE seed formation but now under-predicts RE seed

Open area for improvements ... Pellet interaction missing

Paz-Soldan/IAFA/October2018

DIII-D Sometimes Experiences Unreliable RE Formation ... Threshold Behavior Observed

- RE formation in DIII-D can be unreliable
 - Corollary: RE plateaus avoidable

Threshold for RE avoidance seen
in primary Argon quantity and Ip

Intense Alfvenic Instabilities (~ MHz range) Observed During RE Plateau Formation, Correlates with Avoidance

- Avoided RE plateaus correlate with intense & coherent MHz-frequency modes
 - Candidate: compressional Alfven wave driven by REs

Intense Alfvenic Instabilities (~ MHz range) Observed During RE Plateau Formation, Correlates with Avoidance

- Avoided RE plateaus correlate with intense & coherent MHz-frequency modes
 - Candidate: compressional Alfven wave driven by REs
- Hard x-ray spectrometry indicates critical RE energy for mode

A. Lvovskiy et al, PPCF (in press)

Intense Alfvenic Instabilities (~ MHz range) Observed During RE Plateau Formation, Correlates with Avoidance

- Avoided RE plateaus correlate with intense & coherent MHz-frequency modes
 - Candidate: compressional Alfven wave driven by REs
- Hard x-ray spectrometry indicates critical RE energy for mode
- Modes causal to hard x-ray bursts indicating some RE loss
 - Can this explain avoided plateau?

A. Lvovskiy et al, PPCF (in press)

Excitation of Alfvenic Instabilities May Explain Critical Argon Quantity and Ip Dependence for RE Avoidance

 Increasing Argon reduces highenergy REs & suppresses modes

> RE plateau forms

- Increasing I_P increases highenergy RE & enhances modes
 - RE plateau avoided
- Surprising result challenges assumptions about instability

Is neglect of instabilities justified?

Secondary Injection (of High-Z Material) during Plateau Phase is Main Defense for ITER

- 1. Do we understand RE distribution function and dissipation rate?
- 2. How can the dissipation rate be increased?

Resolving Anomalous RE Dissipation is a Key Issue ... Seen in Multiple Experiments and Regimes

R. Granetz et al, Phys Plasmas 2014

Ohmic Flat-top

Post-Disruption

Resolving Anomalous RE Dissipation is a Key Issue ... Seen in Multiple Experiments and Regimes

Direct Comparison of Experimental and Theoretical RE Distribution Functions Confirm Non-Monotonicity

- RE distribution obtained from:
 - HXR spectroscopy (experiment)
 - 0-D Fokker-Planck (model)
- Both peak at similar energies
- High-energy falls off faster in experiment

Direct Comparison of Experimental and Theoretical RE Distribution Functions Confirm Non-Monotonicity

- RE distribution obtained from:
 - HXR spectroscopy (experiment)
 - 0-D Fokker-Planck (model)
- Both peak at similar energies
- High-energy falls off faster in experiment
- Increasing collisional damping reduces RE energy in both

Direct Comparison of Experimental and Theoretical RE Distribution Functions Confirm Non-Monotonicity

Paz-Soldan/IAFA/October2018

- **RE distribution obtained from:**
 - HXR spectroscopy (experiment)
 - 0-D Fokker-Planck (model)
- Both peak at similar energies
- High-energy falls off faster in experiment
- Increasing collisional damping reduces RE energy in both
- Synchrotron-based RE validation to be discussed later this session

High Frequency Antenna Reveals Kinetic Instabilities at ~100 MHz in Ohmic Flat-top RE Experiments

- Instability intensity proportional to RE population size
- Identified as whistler wave by varying dispersion relation terms
- De-stabilized (in part) by non-monotonic distribution function features
 - ~ 100 MHz modes predicted (and observed)
 - ~ GHz modes also predicted (no diagnostic)

D. Spong, TH/P8-17 & K. Thome, EX/P6-29

D. Spong et al, PRL 2018

Antenna

Paz-Soldan/IAEA/October2018

Inclusion of Kinetic Instability Recovers Anomalous Dissipation and Improves Distribution Agreement

• Experiment identified dissipation rate and distribution function anomalies

Inclusion of Kinetic Instability Recovers Anomalous Dissipation and Improves Distribution Agreement

C. Liu, TH/P8-16

Paz-Soldan/IAFA/October2018

- Experiment identified dissipation rate and distribution function anomalies
- Quasi-linear diffusion model w/ instability reproduces elevated E/E_{crit} threshold
 - Possible resolution to reported discrepancy

24

Inclusion of Kinetic Instability Recovers Anomalous Dissipation and Improves Distribution Agreement

- Experiment identified dissipation rate and distribution function anomalies
- Quasi-linear diffusion model w/ instability reproduces elevated E/E_{crit} threshold
 - Possible resolution to reported discrepancy
- Much better match of RE distribution slope with kinetic instability included

Kinetic instabilities essential to understand Ohmic flat-top regime dynamics

n_{RF} theory (without modes)

Paz-Soldan/IAFA/October2018

C. Liu, TH/P8-16

Are Instabilities an Alternate Path to Dissipate the RE Plateau?

- Secondary injection expected to be high-Z material (Argon)
- Can kinetic instabilities offer an alternate path to control?

Exploitation of Kinetic Instability Easiest in Collisionless Plasmas

 Stability diagram calculated¹ for high-freq kinetic instabilities

¹P. Aleynikov, B. Breizman, NF 2015

Exploitation of Kinetic Instability Easiest in Collisionless Plasmas

- Stability diagram calculated¹ for high-freq kinetic instabilities
- High-Z (Ar) injection likely to suppress instabilities via collisional damping
 - However counter example already shown: ~ 1 MHz modes
 - Stability analysis¹ needs to be amended for Alfvenic modes

¹P. Aleynikov, B. Breizman, NF 2015

Exploitation of Kinetic Instability Easiest in Collisionless Plasmas – Achievable by Injecting Deuterium

- Stability diagram calculated¹ for high-freq kinetic instabilities
- High-Z (Ar) injection likely to suppress instabilities via collisional damping
 - However counter example already shown: ~ 1 MHz modes
 - Stability analysis¹ needs to be amended for Alfvenic modes
- Low-Z (D₂) injection reduces density² and thus damping

¹P. Aleynikov, B. Breizman, NF 2015 ²D. Shiraki et al, NF 2018

D₂ Injection Enables Observation of Natural Kinetic Instability in Few-eV Post-Disruption RE Plateau

- Natural instability observed in post-D₂ RE plateau, but so far only with large applied electric fields
 - Indicates natural RE distribution function is stable in DIII-D
- Area for future work, alongside RF antennas for active launch

Active and passive methods under study

Dissipation via Secondary Injection Must Happen Faster than Vertical Instability Loss Rate

NATIONAL FUSION FACILITY

31

K. Aleynikova et al, Plasma Phys. Rep. 2016

Dissipation via Secondary Injection Must Happen Faster than Vertical Instability Loss Rate

- ITER RE beam will be vertically unstable
 - Finite time to dissipate RE
- DIII-D has developed vertically unstable RE beams to address key physics questions

RE Current at Final Loss Can Be Reduced with High-Z

 Reduced RE current at final loss achieved by increasing Argon quantity

RE Current at Final Loss Can Be Reduced with High-Z ... but Saturation of Dissipation Observed

- Reduced RE current at final loss achieved by increasing Argon quantity
- RE dissipation saturates at given Ar quantity
 - Upper bound on assimilation
 - Universal observation^{1,2,3}

Possible show-stopper for high-Z dissipation

¹C. Reux et al, NF 2015, ²G. Papp, IAEA 2016 ³Z.Y. Chen, ITPA 2017

Saturation of Dissipation Linked to Ionization Power Balance: Temperature Effects Can Slow High-Z Diffusion

- Ionization of large Ar quantities causes significant T_e drop
- Lower temperature and higher Ar density reduces diffusion coefficient
 - Classical diffusion goes like T / n
- Vertical loss happens faster than Ar can diffuse: not enough time
 - Observed dissipation saturates

RE dissipation depends on ionization power balance

Important Advances in RE Experiments and Modeling are Improving Predictive Capability for ITER DMS Design

<u>RE Avoidance:</u>

- Modeling does not yet predict RE seed
- Kinetic instability may explain threshold dependence on I_P and Ar quantity

<u>RE Mitigation:</u>

- Including kinetic instability in modeling reproduces elevated E/E_{crit} threshold
 - Application to disruption under study
- High-Z dissipation saturation linked to ionization power balance

Bonus Slides

Model Validation Using Synchrotron Emission Images Explores Pitch-Angle and Spatial RE Dynamics

- Agreement with experiment seen in multiple simulations
- Pitch-angle distribution is not what 0-D Fokker-Planck models would predict
- See later talk for more information

L. Carbajal et al, PoP 2018

Paz-Soldan/IAEA/October2018

Dynamics of Final Loss Phase Sets Ultimate Requirement for RE Mitigation

- What final RE current is tolerable?
- Can we predict the heating of the first-wall?

Joule Heating of First-Wall from RE Strike Can Be Predicted as well as its Z-dependence

- 0-D circuit model¹ developed to predict Joule heating of wall from RE strike
- RE loss time required input, measured in DIII-D
- Model successfully captures total heating and Z-dependence

0-D Model Successful Local Estimates are Future Work

¹R. Martin-Solis, NF 2017 E.M. Hollmann et al, NF 2017