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Runaway Electron (RE) Control is an
Existential Concern for Fusion-Grade Tokamaks

REs are formed after a disruption

and can damage the first wall
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Runaway Electron (RE) Control is an
Existential Concern for Fusion-Grade Tokamaks

REs are formed after a disruption

and can damage the first wall

Talk presents experiment and
modeling advances for the:
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Runaway Electron (RE) Control is an
Existential Concern for Fusion-Grade Tokamaks

REs are formed after a disruption

and can damage the first wall

Talk presents experiment and
modeling advances for the:
1. Formation Phase: Avoidance
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Runaway Electron (RE) Control is an
Existential Concern for Fusion-Grade Tokamaks

REs are formed after a disruption
and can damage the first wall Plateau

Talk presents experiment and Phase
modeling advances for the:

)
1. Formation Phase: Avoidance &
RO Y Secondary
2. Plateau Phase: Mitigation = Injection
)
qv)
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o
time %
‘RE

DIl-D Mitigation
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Runaway Electron (RE) Control is an
Existential Concern for Fusion-Grade Tokamaks

* REs are formed after a disruption
and can damage the first wall

« Talk presents experiment and
modeling advances for the:

)

1. Formation Phase: Avoidance  §

2. Plateau Phase: Mitigation =

U

[ ) ] o o m

« Limited opportunity for empirical g
tuning of RE mitigation ©

(ol

Validated predictive modeling
of RE control is essential
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RE Formation Phase Offers the Opportunity to

Completely Avoid RE Issues

Formation
Phase
1. Can we predict the
initial (seed) RE current? g /
. 5 Primary
2. Do we have options to ~ |Injection
avoid the RE plateau = (pre-TQ)
4°)
o

phase?

RE Seed RE
DIll-D current Avoidance
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Experimental RE Seed Current of ~ 1 kA Estimated

... Far Away from Hot-Tail Theory Predictions

Pre-Disruption
Electron Maxwellian Distribution

« Hot-Tail mechanism'! expected to

dominate RE seed production in ITER Hot Electron |

Tail Decouples|

Rapid Bulk
Cooling (TQ) &.forms RE

5 10 1
Energy (keV)

# Electrons

5 20

(@)

Dil-D 1Smith et al, PoP 2008
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Experimental RE Seed Current of ~ 1 kA Estimated

... Far Away from Hot-Tail Theory Predictions

Pre-Disruption
Electron Maxwellian Distribution

« Hot-Tail mechanism'! expected to

e

dominate RE seed production in ITER = Hot Electron
D | : Tail Decouples|

L Rapid Bulk \ @ forms RE

. H Cooling (TQ)
- Early theory! exceeds experimental 0 5 10 15 20
. . . 2 Energy (keV)

estimates from pellet ablation light SRR U
107 RE seed g B
- current (A) L 2 -
1021 Smith! ’
103! Experiment §-.--§--§ |
101+ _

0 2

1
IRE (100 kA)

Dil-D 1Smith et al, PoP 2008
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Experimental RE Seed Current of ~ 1 kA Estimated

... Far Away from Hot-Tail Theory Predictions

Pre-Disruption
Electron Maxwellian Distribution

* Hot-Tail mechanism' expected to «
dominate RE seed production in ITER = Hot Electron
D | . Tail Decouples|
(| Rapld Bulk @ forms RE
. H Cooling (TQ)
- Early theory! exceeds experimental 0 5 10 15 20
. . . 2 Energy (keV)
estimates from pellet ablation light SRR U
107 RE seed g B
2 . - current (A) L 2 -
* Recent theory self-c:onmstenﬂy freats 105¢ Smith! -
plasma cooling wﬂh. RE seed formation ,| Experiment gufod |
but now under-predicts RE seed 1027 ]
: 107+ Aleynikov & Briezman3 -
Open area for improvements B I
... Pellet interaction missing T T
IRE (100 kA)
Dil-D 3p. Aleynikov, B. Breizman, NF 2017  'Smith et al, PoP 2008
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DIlI-D Sometimes Experiences Unreliable RE Formation

... Threshold Behavior Observed

1.2 ‘ | | | | |
« . <08 1
« RE formation in DIII-D can be Primary Ar Yes plateau

Ip [MA

° 0.4’ )
#177028: 50 torr-|
unreliable . 0 #:;;oso: 1go 13::4 W‘i
— Corollary: RE plateaus avoidable o 2 4 & 8 10 12
t-tis (Ms)
2x
. 1.2+ = | | K
- Threshold for RE avoidance seen .
in primary Argon quantity and Ip < e
= \6%(\ B No plateau
o o S ¢ RE plateau
- 2x 2x 2x
0.8+ ®m L B ¢
0 50 100 150

D=0 Primary Argon Quantity [torr-1]
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Avoided RE plateaus correlate with

modes

— Candidate: compressional Alfven
wave driven by REs

Dili-D
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Intense Alfvenic Instabilities (~ MHz range) Observed
During RE Plateau Formation, Correlates with Avoidance

1.2 | |
. <08 1
intense & coherent MHz-frequency = Primary Ar Yes plateau
2
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During RE Plateau Formation, C

Avoided RE plateaus correlate with
infense & coherent MHz-frequency
modes

— Candidate: compressional Alfven
wave driven by REs

Hard x-ray spectrometry indicates
critical RE energy for mode

)
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Intense Alfvenic Instabilities (~ MHz range) Observed

orrelates with Avoidance

1.2
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Intense Alfvenic Instabilities (~ MHz range) Observed
During RE Plateau Formation, Correlates with Avoidance

Avoided RE plateaus correlate with
infense & coherent MHz-frequency
modes

— Candidate: compressional Alfven
wave driven by REs

Hard x-ray spectrometry indicates
critical RE energy for mode

Modes causal to hard x-ray bursts
indicating some RE loss

— Can this explain avoided plateau?

Dili-D
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zos |
Primary Ar Yes plateau

“*#177028: 50 torr-|

#177030: 130 torr-| No plateau

Freq [MHz] Freq [MHz]
N W hO = N W HO

O -

#177028 - No Plateau

RE losses

3
t-tgis(ms)
A. Lvovskiy et al, PPCF (in press)
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Excitation of Alfvenic Instabilities May Explain Critical

Argon Quantity and Ip Dependence for RE Avoidance

* Increasing Argon reduces high-

energy REs & suppresses modes 1 | |
» RE plateau forms B No plateau
¢ RE plateau [ ]
* Increasing |, increases high- P > ¢ -
energy RE & enhances modes o -g- Y ¢ O
> RE plateau avoided -g,g, g ®Wee gn u
c
=0
o- More Ar Higher |
 Surprising result challenges . g ..
assumptions about instability 04 5 5 . 8 9

Is neglect of instabilities justified? max RE Energy [MeV]

NATIONAL FUSION FACILITY
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Secondary Injection (of High-Z Material) during Plateau

Phase is Main Defense for ITER

1. Do we understand RE
distribution function and
dissipation rate?

2. How can the dissipation
rate be increased?
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Resolving Anomalous RE Dissipation is a Key Issue

... Seen in Multiple Experiments and Regimes

1 05 Critical E-field 10X Critical E-field
— ] \ . | L
7 (2D .
= 05 o _ 10}
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R. Granetz et al, Phys Plasmas 2014 E. Hollmann et al, Nucl Fusion 2011
Ohmic Flat-top Post-Disruption
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Resolving Anomalous RE Dissipation is a Key Issue

... Seen in Multiple Experiments and Regimes

1 05 Critical E-field 10X Critical E-field
g 0.5 10|
2 % |
& 0.0 =0
=
E’ 0.5 < Small puffs |] B Measured
g 1.0 : m Med. puffs || _20:/2'
§ - A Large puffs A . |
0 2 3E Z/‘E 5 6 7 8 N5 00 05 10 15 20
¢'=C Esur - Ecrit (V/m)
R. Granetz et al, Phys Plasmas 2014 E. Hollmann et al, Nucl Fusion 2011
Ohmic Flat-top Post-Disruption
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Direct Comparison of Experimental and Theoretical

RE Distribution Functions Confirm Non-Monotonicity

gl e . 1-D RE distributi B trahl
« RE distribution obtained from: 0 distribufion via Bremsshahlung
— HXR spectroscopy (experiment) 4L AT - | Og“%a( ue))
— 0-D Fokker-Planck (model) v 1
- Both peak at similar energies 2 e S S
. . T T ;(755826
* High-energy falls off faster in experiment
logyo f(Ee)
—— (0-30°)-
,,,,,,,, \
-2
0 5 10 15 20
piIl-p
19

E (MeV)
C. Paz-Soldan et al, PRL 2017
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Direct Comparison of Experimental and Theoretical

RE Distribution Functions Confirm Non-Monotonicity

. RE distribution obtained from: IO-D RE distribution via Bremsstrahlung
— HXR spectroscopy (experiment) P 7 5 Wi . | 0910(25‘9){
— 0-D Fokker-Planck (model) & 1
- Both peak at similar energies 2T N7 T *
) Pe | |-
- High-energy falls off faster in experiment 4 EXperiment 165824

« Increasing collisional damping reduces RE
energy in both

+1.5$<1019 m-3||
) —e—1.0x1019 m-3

0 5 10 15 20
Dii-b E (MeV)
20 Paz-Soldan/IAEA/October2018 C. PGZ'SOqun ei' ql, PRI. 201 7




Direct Comparison of Experimental and Theoretical

RE Distribution Functions Confirm Non-Monotonicity

. RE distribution obtained from: IO-D RE distribution via Bremsstrahlung
— HXR spectroscopy (experiment) Al LA . | 0910(Ziei
— 0-D Fokker-Planck (model) 1
- Both peak at similar energies 2T NG A T |
3 Pe | X
. . . ; 165826
* High-energy falls off faster in experiment 4 Experiment 165824
* Increasing collisional damping reduces RE | Y — (0-30°)
energy in both 1 ?
* Synchrotron-based RE validationtobe ' +1-5x1012 ng’
discussed later this session -2 1010 m
0 5 10 15 20
H”’N-DW Synchrotron: del-Castillo-Negrete, TH/4-3 E (MeV)
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High Frequency Antenna Reveals Kinetic Instabilities at

~100 MHz in Ohmic Flai iop = Experlmen’rs

171@87

* Instability intensity 140 ;
proportional to RE

. ] ~ 13
population size Z
:' 12
N . Whistler
* ldentified as whistler 11 Structure

wave by varying il _k o
dispersion relation terms 18%00  5.025  5.050 5075 5100  5.130 N c
Time [s] 7 ..“E’
« De-stabilized (in part) by non-monotonic YHe <
distribution function features 0 {\g ”%

— ~ 100 MHz modes predicted (and observed) 1

— ~ GHz modes also predicted (no diagnostic) . \“
Dill-D D. Spong, TH/P8-17 & K. Thome, EX/P6-29
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Inclusion of Kinetic Instability Recovers Anomalous

Dissipation and Improves Distribution Agreement

nge theory (without modes) -7

’

)

L (@)
T

/,, 3_

L7 w)

< D

r 0O
Q

s’ ~

- Experiment identified dissipation rate and
distribution function anomalies

Experiment .
(HXR) 0

.
o -
’

-~ O o o
o O O O

Growth Rate (1/s)

2 4 6 8
Eo/Ecrit

Experiment
(Invert HXR)

theory
(without |
modes)

RE Distribution
(log10 a.u.)

165826
4 t=275s

0 10 20 " 30
DiuI-o £ (MeV)
23 Paz-Soldan/IAEA/October2018 C. Liv et GI, PRL 2018




Inclusion of Kinetic Instability Recovers Anomalous

Dissipation and Improves Distribution Agreement

° L] oge [ ] ° L] i O
- Experiment identified dissipafion rate and g , | theory (withoutmodes) S
distribution function anomalies = vy, >
O z —
© 0.0 Experiment L7 w,
o o . - T 5 HXR g g
- Quasi-linear diffusion model w/ instability € i theory |
reproduces elevated E/E_; threshold 5100 " ¥ (withmodes)
— Possible resolution to reported discrepancy © o . . .
2 4 6 8
E¢/Ecrit
O \ \
C
O 4! |
55 Experiment
O m 5 (Invert HXR)
So-2) |
k%) S theory
0o 3! (without |
i~ des)
o 165826 modes
4 t=275s S 55 a0
0 1
Dill-D C. Liu, TH/P8-16 E (MeV)
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Inclusion of Kinetic Instability Recovers Anomalous

Dissipation and Improves Distribution Agreement

° L] oge [ ] ° L] i O
- Experiment identified dissipafion rate and g , | theory (withoutmodes) d
distribution function anomalies z ¥ >
O z —
T 0.0 Experiment L7 o
T 5l HXR g D
* Quasi-linear diffusion model w/ instability g - °. \otheory |8
reproduces elevated E/E_; threshold S-1op 7 (with modes)
— Possible resolution to reported discrepancy © o . . .
2 4 6 8
0 E¢/Ecrit
* Much better match of RE distribution slope ¢ B odes)
with kinetic instability included = Experiment
O ® 5 (Invert HXR)
SEo-2; |
: TP TR T : N2 R theory
Kinetic instabilities essential fo understand aQ (without
Ohmic flat-top regime dynamics W= 3 165826 modes) |
4 t=275s | .
0 10 20 30
Dill-D C. Liu, TH/P8-16 E (MeV)
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Are Instabilities an Alternate Path to

Dissipate the RE Plateau?

Plan A:
High-Z Injection

- Secondary injection
expected to be high-
Z material (Argon)

Plan B:
Instabilities?
- Can kinetic (natural
instabilities offer an or driven)

alternate path to
control?

NATIONAL FUSION FACILITY
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Exploitation of Kinetic Instability Easiest in Collisionless

Plasmas

Stability diagram calculated!

for high-freq kinetic instabilities Quiescent Ohmic
Flat-top Experiments

” £ %

18 E ~

un

5 16 oo

S 14 =

£ 1o © 2y

8 0 T H

£ 10 O

5 8 30 8 ac

£ =

T 6 O -|§
o

; £ 3

2 2 C)

02 04 06 08 1 12 14 16 18
Plasma density, 1029 m3
[ | & » ] P. Aleynikov, B. Breizman, NF 2015
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Exploitation of Kinetic Instability Easiest in Collisionless

Plasmas
- Stability diagram calculated!
for high-freq kinetic instabilities Quiescent Ohmic
20 Flat-top Experlmer)ts | .Z‘ _
« High-Z (Ar) injection likely to 18 = f
suppress instabilities via s :j 8o
collisional damping 2. 10 €%
— However - counter example 5 ¢ |© D T
already shown: ~ 1 MHz modes & 1o N %
— Stability analysis' needstobe & 6 o3
amended for Alfvenic modes 4 £ o
2 o0
Z
02 04 06 08 1 12 14 16 18
Plasma density, 1029 m3
DD P. Aleynikov, B. Breizman, NF 2015

NATIONAL FUSION FACILITY
28 Paz-Soldan/IAEA/October2018



Exploitation of Kinetic Instability Easiest in Collisionless

Plasmas — Achievable by Injecting Deuterium

- Stability diagram calculated!
for high-freq kinetic instabilities

n
o

« High-Z (Ar) injection likely to 18
suppress instabilities via
collisional damping

— However - counter example
already shown: ~ 1 MHz modes

— Stability analysis' needs to be
amended for Alfvenic modes

Vv
(SR

Plasma temperature, e
=)

[ R N o B o

* Low-Z (D,) injection reduces
density? and thus damping

Dili-D

NATIONAL FUSION FACILITY

Quiescent Ohmic
Flat-top Experiments

1 50
1 40
{ 30

Normalized Instability
Growth Rate (105 /s)

02 04 06 08 1 1.2 14 16 18

Plasma density, 1029 m3

1P. Aleynikov, B. Breizman, NF 2015
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D, Injection Enables Observation of Natural Kinetic

Instability in Few-eV Post-Disruption RE Plateau

TE b (V/m) | 174326
* Natural instability observed in post-D, 0
RE plateau, but so far only with large \,J\
applied electric fields 11 |
— Indicates natural RE distribution 1.7 1.8 1.9
function is stable in DIII-D
« Area for future work, alongside RF 8 F : i
antennas for active launch N
=6
Active and passive -
methods under study - 5

1760 1768 1776  1.784
Din-p t (s)
30
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Dissipation via Secondary Injection Must Happen Faster
than Vertical Instability Loss Rate

* ITER RE beam will be vertically

unstable -
— Finite fime to dissipate RE @
=
)
qv)
é Ry Wall
R S Strike
o i finite time to act
time
DIn-pD K. Aleynikova et al,
31 gttt i Paz-Soldan/IAEA/October2018 qusmq Phys' Rep' 2016



Dissipation via Secondary Injection Must Happen Faster

than Vertical Instability Loss Rate

finite time to act
300 3 -

* ITER RE beam will be vertically

)... .

— Final
unstable - g S } Loss
—  Finite time to dissipate RE < 200 B
5 8=
- DIlI-D has developed vertically = i
unstable RE beams to address 8 100 Tl
key physics questions oc =
oL
1.30 1.35

NATIONAL FUSION FACILITY
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RE Current at Final Loss Can Be Reduced with High-Z

 Reduced RE current at final loss 300
achieved by increasing Argon

quantity . d
g ke
X 200 o
e -
c s>
@ S—
= n o
= e
O 100 T
~ >

NATIONAL FUSION FACILITY
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RE Current at Final Loss Can Be Reduced with High-Z

... but Saturation of Dissipation Observed

 Reduced RE current at final loss 300
achieved by increasing Argon
quantity
— o=
< o
o . X, 200 E=
* REdissipation saturafes at given t‘§
Ar quantity 7] S—=
N = v 3
— Upper bound on assimilation 8 100 = 270 & 400
— Universal observation'23 w g
oz
Possible show-stopper 0. ,A
for high-Z dissipation 1.30 185 1.40 1.45 1:50
t(s)
Dil-D IC. Reux et al, NF 2015, 2G. Papp, IAEA 2016
34 Paz-Soldan/IAEA/October2018 3ZY Chen, ITPA 2017



Saturation of Dissipation Linked to lonization Power

Balance: Temperature Effects Can Slow High-Z Diffusion

- lonization of large Ar quantities
causes significant T, drop

- Lower temperature and higher Ar
density reduces diffusion coefficient

— Classical diffusion goes like T/ n

« Vertical loss happens faster than Ar
can diffuse: not enough time

— Observed dissipation saturates

RE dissipation depends on
ionization power balance

NATIONAL FUSION FACILITY
35
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100

Assimilated Ar Diffusion

Argon (torr-L) Coeff (m2/s)

o

Less lonization

>

Slower Diffusion

//'
7/

S\° // \
B Less |
/ o (] (3

~ Assimilation

] 100 200
Injected Argon (Torr-L)
E. Hollmann et al, NF (in prep)



Important Advances in RE Experiments and Modeling

are Improving Predictive Capability for ITER DMS DeS|gn

[ | No plateau
RE Avoidance: ¢ RE plateau m ]
. . S N
Modeling does not yet predict RE seed £ 3 o
] ° o eoge ° -Q l:.
- Kinetic instability may explain threshold 2¢ 'g ¢ ol |
H £o
dependence on |, and Ar quantity £ | More Ar Higher Ip
0 L L 1 1
o 4 5 &6 7 8 9
RE Mitigation: max RE Energy [MeV]
- Including kinetic instability in modeling ﬁR’;’t“Ké%rF}a‘ﬁ.t ) A
reproduces elevated E/E_; threshold 09 «f**”j’!'*‘
— Application to disruption under study 00 et
- R |
+ High-Z dissipation saturation linked to C T s T
ionization power balance ,+*"¢® nNpgtheory
-1.0 . .
i o (with modes)
(e)ice o
Dil-bD 2 4 6
36 iy Paz-Soldan/IAEA/October2018 Ed)/ECFIt ’3“‘5“""‘"" Aromics



Bonus Slides

-
NATIONAL FUSION FACILITY
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Model Validation Using Synchrotron Emission Images
Explores Pitch-Angle and Spatial RE Dynamics

- Agreement with experiment seen
in multiple simulations

' 25 MeV
- Pitch-angle distribution is not what (Mono-energy)

0-D Fokker-Planck models would
predict

« See later talk for more information

Energy from GRI

12 14 16 18 2 22 12 14 16 138 2 22

R (m) R (m)

D= D. Del-Castillo Negrete, TH/4-3 M. Hoppe et al, NF 2018
(S Paz-Soldan/IAEA/October2018 L. qubdjal et ql, POP 2018
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Dynamics of Final Loss Phase Sets Ulfimate Requirement

for RE Mitigation

Final Loss
Phase
« What final RE current is =
tolerable? v
5
]
 Can we predict the g
i i ? (V)] RS Wa.”
heating of the first-wall? 3 S8 Strike

time

NATIONAL FUSION FACILITY
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Joule Heating of First-Wall from RE Strike Can Be

Predicted as well as its Z-dependence

« 0-D circvuit model'! developed to
predict Joule heating of wall from
RE strike

Johle Heétiné (kJ)
0D Model

* RE loss time required input,
measured in DIII-D

\

Measured
| + Loss Terms 3

- Model successfully captures total . Measured
heating and Z-dependence 0 i
1 0 ] ] ] ] ]
0-D Model Successful 0 2 4 6 8 10
Local Estimates are Future Work Z
D=0 1R. Martin-Solis, NF 2017
qp [T Poz Soldan/AEA/Octabar01s E.M. Holimann et al, NF 2017



