27th IAEA FEC

Current Design and R&D Progress of CN HCCB TBS

Xiaoyu WANG

Southwestern Institute of Physics (SWIP), China On behalf of CN TBM team

CNTBM program: Helium Cooled Ceramic Breeder Test Blanket System (HCCB TBS) Leaded by CN DA Supporting Institutes:

- 1). Southwestern Institute of Physics (SWIP), China
- 2). China Academy of Engineering Physics (CAEP), China
- 3). Institute of Nuclear Energy Safety Technology(INEST), China

- Introduction
- System Overview
- Design Optimization
- R&D Progress
- Safety
- Summary

SWIP

FIP/1-6

Introduction

- The ITER facility could offer a unique opportunity to demonstrate the feasibility to test tritium breeding blanket technology in a tokamak reactor and to test Tritium producing components.
- Verification of tritium breeding technology by Test Blanket Module (TBM) program is one of the engineering goals for ITER.
- CN TBM Program was established by CN DA in 2009 and the Helium Cooled Ceramic Breeder (HCCB) TBM concept was selected.
- CN TBM Program is the first step toward the future breeding blanket for CFETR and DEMO.

FIP/1-6

3

SWIF

General Objectives of CN HCCB-TBM Program

The objectives of CN HCCB TBS is to test the tritium breeding blanket technology in the tokamak operation conditions provided by ITER.

TBM Concepts and Port-Sharing

TBM Port allocation

Port No. and PM	TBM Concept	TBM Concept	
#2 (PM : CN)	HCCB (TL : CN)	LLCB (TL : IN)	
#16 (PM : EU)	HCLL (TL : EU)	HCPB (TL : EU)	
#18 (PM : JA)	WCCB (TL : JA)	HCCR (TL: KO)	
PM · Port Master, TL · ·	TBM Leader		

The signature of CN HCCB TBMA

- The HCCB-TBS TBM Arrangement (TBMA) was signed on Feb. 13th 2014 by ITER Organization and CN DA. This is a fundamental step forward for the Chinese TBM Program.
- The CDR has been hold in July 2014 and approved in September 2015 by ITER. Now HCCB-TBS is at the preliminary design phase.

FIP/1-6

5

Subsystems and Configuration of HCCB TBS

Subsystems and Configuration of HCCB TBS

Design Optimization for HCCB TBM-set

Since conceptual design, the HCCB TBM was significantly simplified considering the material performance, manufacturability and ALARA principle.

Main optimization:

- Simplification of back plate
- Multiplier pebble bed: Binary \rightarrow Unitary
- Enrichment Li6 increase
- Design configuration update
- TPR is slightly increased to ~0.061g/FPD
- TES parameters: 0.3MPa, 0.3g/s

Design Optimization for HCCB TBM-set

Main design parameters

Parameters	Values
Neutron wall load	0.78 MW/m ²
Surface heat flux	0.3 MW/m ²
Structural material	CLAM/CLF-1 ~1.2ton (<550°C)
Tritium Breeder	Li ₄ SiO ₄ pebble bed (<900°C)
Neutron Multiplier	Beryllium pebble bed (<650°C)
Coolant	Helium (8MPa) 1.04 kg/s (300°C/500°C)
Purge gas	Helium (0.3MPa) with 0.1% H ₂
TPR	0.061g/FPD

Analysis validation

	Pm	Pm+Pb	Pm+Pb+∆Q
Normal	<84MPa	127MPa	500MPa
Hydrostatic test	<162MPa	311MPa	-
In-box LOCA	<174.7MPa	224MPa	-

SWIP

Design Optimization for HCCB TBM-set

Based on fabrication technology R&D and engineering analyses, HCCB TBM shield was further optimized:

- Reduce the total length to increase the interspace with TBM with similar shielding capability
- Optimize pipe configuration, thickness of shell, supporting structure to simplify the manufacturing

Main design parameters		
Parameters	Values	
Structural material	SS316LN-IG	
Coolant	Water (4MPa) 0.1 kg/s 70ºC/125ºC	
Dead weight	~5 tons	
Water volume	0.98 m3	
Water fraction	~40%	
Nuclear heating	20.3 kW	

Design Optimization for HCCB TBS Ancillary Systems

FIP/1-6

Main design parameters

Parameters	Values (HCS)			
Main structural material	SS316L			
Supporting structure material	SS304			
Primary coolant circuit	Helium			
- Pressure	8 MPa			
- Total flow rate	1.04 kg/s			
- Pressure drop	~0.5 MPa			
- Inlet/outlet temperature	500°C/300°C			
Interface with CCWS	Water			
- Pressure	0.8 MPa			
- Total low rate	21.3 kg/s			
 Inlet/outlet temperature 	31°C/43°C			
Tritium related system	Values (TES, CPS)			
- Purge gas	He with 0.1% H_2			
- T purification efficiency	≥ 95%			
- Impurity removal efficiency	≥ 90%			
- T extraction efficiency	≥ 90%			

The design of all ancillary systems have been optimized considering the review comments, safety and interface requirements:

- Configuration update based on equipment investigation, PFD and PID diagrams update
- System performance assessment, structural analysis

SWIP

Design Optimization for HCCB TBS Ancillary Systems

HCCB TBS System integration

FIP/1-6

13

AEU integration

- Component design for HCCB TBS in AEU has been updated.
- Uncertainty of IN withdraw \rightarrow two sets of HCCB TBS components for AEU.

Components and equipment in TBS 5

C	Components	Dimension	insulation layer/mm	Mass/kg	Material	Work Under Maximum ambient temperature 60°C, (Y/N)
-	Cooler 1	D200xH700mm	100	40	316L	Y
	Cooler 2	D200xH700mm	100	40	316L	Y
	Ionization chamber 1	D500xL700mm	/	40	316L	Uncertain,need further evaluation
	Ionization chamber 2	D500xL700mm	/	40	316L	Uncertain,need further evaluation
	Molecular Sieve Bed	D150xH400mm	/	35	316L	Y
TES	Measurement unit	400x400x500mm	/	30	316L	Uncertain,need further evaluation
	Reduction Bed	D380xH800mm	120	110	316L	Y
	Relief Tank	2m ³	/	300	316L	Y
	Particle Filter 1	D100xH400mm	100	10	316L	Y
	Particle Filter 2	D100xH400mm	100	10	316L	Y
	Compressor	D550xL750mm	1	100	316L	Uncertain,need further evaluation
	Pipes(2)	DN25/80s	100(only outlet)	/	316L	Y
NAS	Pipes(2)	DN6/40s	/	/	316L	Y
DA	Pipes(1)	DN50/10s	/	/	316L	Y
HCS	Pipes(3)	DN80/80s	100	/	316L	Y
	Mixer	D120×L200mm	100	TBD	316L	Y

Component configuration in AEU

SWIP

R&D Progress – material development

Improved the material specification of RAFM steel and completed the fabrication of 4 ingots (5-tons) and 10 tons section bar of CLF-1. Prepared the two standards for CLF-1 steel and one for CLAM.
 Completed the trial certificate with NB and obtained the 3.2 certificate based on RCC-MR.
 Completed ion implantation experiment and He(0.1%H) compatibility experiment for CLF-1.

R&D Progress – material development

Completed the beryllium pebble fabrication facility improvement and achieved the production capability of 10kg scale; Completed He⁺⁴ implantation experiment for beryllium;

Studied unitary/binary pebble bed (PB), U-shape and compressed PB by DEM and experiments.

R&D Progress – TBM fabrication technology

After a large amount of testing and consideration of TBM design, the LB welding and EB welding have been selected as the main welding method, and the TIG welding as supplementary method.
Based on the TBM updated design and the selected welding methods, the preliminary fabrication procedure of has been prepared.

R&D Progress – TBM fabrication technology

The sample of key components and semi-prototype have been fabricated and tested.

SWIP

Southwestern Institute of Physics

FIP/1-6 17

R&D Progress – HCCB TBS Ancillary Systems

Several testing facilities/loops have been constructed, the related experiments are ongoing to verify the design and operation of ancillary systems. The construction of new testing facilities are under plan.

Control system and ITER Mini-CODAC

Hydraulic testing sample

He

HeCEL-1 (0.1kg/s@8MPa&400°C)

CPS testing facility

Absorbing material testing facility

TES testing facility

Southwestern Institute of Physics

FIP/1-6 18

Safety Aspect

FW 2 -

Re 1

Re 2

Li4Si04 1

Li4Si04 2

Li4SiO4 1

Li4Si04 2

The safety work focused on preparing the answering reports of Engagement 9.1.

- Design description update and provisions
- Nuclear analysis(incl. benchmark with KO&IN)
- Tritium analysis (incl. benchmark with KO)
- Accident analysis
- Other analysis

Southwestern Institute of Physics

Example of tritium release results

25.4

7.4

HCCB-TBS Overall Schedule

ITER Commissioning and Operations

Summary

- CN HCCB TBS is one of the most important part of China fusion development strategy toward DEMO.
- After the conceptual design approval in 2015, the design of the HCCB TBS has been significantly optimized and developed in detail according to the schedule and requirements.
- In order to support the design optimization, a lot of R&D activities have been implemented, including structure material and function materials development, fabrication of TBM mockup, construction of the testing loops and so on.
- Still many challenges remain and need to be solved during the design phase.

FIP/1-6

21

SWIP

Thank you for your attention !

Southwestern Institute of Physics

FIP/1-6 22