Anisotropy impacts ballooning modes

TH/P5-12 Hole et al

- New tools to study impact of anisotropy on equilibrium / stability
 - \triangleright HELENA+ATF / remapping tools for equilibria with anisotropy for same J_{ϕ} , W_{th}
 - MISHKA-A studies continua, global modes with anisotropy and FLOW
- First application to stability of n=30 ballooning mode. [PPCF 60 (2018) 065006]

 γ^2/ω^2 = growth rate of n=30 mode at the outboard location (s \approx 0.98) where the eigenmode is peak.

 γ^2/ω^2 increases with increasing p__/p___ (increasing $\widetilde{\Theta}_0 = T_0/T_{||} \left(1-T_{||}/T_{\perp}\right)$.

Reason: As T_{\perp} increases over $T_{||}$, p_{\perp} surfaces are displaced outboard to bad curvature region cf an inward shift of surfaces stabilises the mode.

Experimentally, values of $\widetilde{\Theta}_0=\frac{p_\perp}{p_\parallel}\gg 2.5$, and $\widetilde{\Theta}_0=\frac{p_\parallel}{p_\perp}\gg 1.7$ have been identified in JET and MAST plasmas, respectively. <u>Hence</u>

Suggests *increasing* p_{\parallel}/p_{\perp} in the pedestal region might lead to higher ELM-free performance