Summary: Inertial Fusion Experiments and Theory
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Summary
Inertial Confinement Fusion (ICF) is a promising route to fusion energy but

challenges remain
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* Much of the work in ICF is related to proof-of-principle experiments to demonstrate ignition.

» Several different approaches to ICF are being pursued around the world; many challenges are similar
- control of nonuniformity and laser plasma interactions are the primary areas of study

» Several facilities around the work at various stages of development are used for ICF
- In the US: The National Ignition Facility (NIF), the OMEGA lasers, and the Z- machine
- The LMJ in France, and SGIll laser in China are being constructed for ICF.

 The leap from ignition to an IFE power plant requires many technological advances.
- More appropriate drivers
- Target delivery
- Reactor construction
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Outline
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* Review of ICF

» Status and path forward
- Hot spot ignition
- Fast ignition — electron source and transport, target manufacture
- Shock ignition
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Both “hot-spot” and “assisted” ICF ignition concepts are being explored globally
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These approaches have greatly expanded the parameter space for ignition
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4 Accessible by Magnetic Direct Drive (MDD),
Liquid DT layer implosions
Accessible by fast
_ Potential and shock ignition
Gain high gains
Conventional
hot-spot ignition
(LID, LDD) X
IFAR -~ 30 IFAR IFAR ~50 In-Flight Aspect Ratio
Vimp ~ 3.5 x 107 cmis Vimp ~ 3 107 cof's IFAR=R/AR
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Increasingly unstable
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The three hotspot ICF approaches use different methods of setting up the drive
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Laser Indirect Drive! Laser Direct Drive? Magnetic Direct Drive3
X-ray (indirect) drive Direct drive Pre-magnetize Preheat Compress

Capsule

2 laser

Laser beams

Hohlraum using
a cylindrical high-Z case

N ww

DT ica

Less sensitive to { Relaxed convergence
short wavelength Couples x3-4 more energy and implosion velocity
th!#aser SpeCkle than LDD |nt0 the CapSL”e than LID Aluminum Liner DT shell reqUirementS
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Several facilities in the U.S are used for these different approaches
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\ Relative
size

OMEGA: TW Iaser, 30 kJ UV NIE: TW |aser’ ~1.9 MJ

A=0.351nm A=0.351nm

60 beams
Shot cycle: ~1/hour 192 beams arranged near the pole

OMEGA EP: PW laser Shot cycle: ~1/day
4 beams in short
or long pulse mode
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Upcoming facilities such as that in France (LMJ)! will accelerate progress in ICF
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. Initial fusion
experiments with 6 bundles
or 12 quads will begin in 2019

4 Laser bays
m Glass Nd laser, frequency tripled : A = 0.35 um
® 22 bundles - 44 quadruplets - 176 beamlines
m Laser energy ~ 1.5 M], Power ~ 400 TW
® Pulse duration : from 0.7 to 25 ns
i 1 specific beam line for the PW laser (PETAL)
1 Target bay i
m Target chamber @ 10 m DT layer
=10 con Al + 40 em borated concrete
m 200 ports for laser beams and diagnostics

» Similar facilities in China (SG Ill) and Russia are being constructed
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Indirect drive experiments! have been performed at the largest energy scales (~1.9
MJ) on the NIF
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Hohlraum Target Capsule Laser Pulse

< Main Pulse
1130um HDC W) T
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He gas 1.86 MJ
fill : — OF gon §§ 100
Cryc-cooling nn 5 10
rings Toe Picket Time (ns)

e« Many variations in ablator materials?, hohlraum case-capsule size ratio3, adiabat have been
investigated
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LID has benefitted from reducing Laser Plasma Interactions in the hohlraum though
challenges remain in symmetry control
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Future work includes
- quantifying beam power imbalance
- quantifying feature (defects, tent, fill-tube) driven mix
- Modifying hohlraum shapes?
- __Increased laser energy
B ROCHIESTER
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Laser Direct Drive experiments! on OMEGA are scaled from ignition designs
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1.5-M, spherically symmetric
direct-drive design

37 gm CH

26- to 29-kJ OMEGA cryogenic design

Adiabat and IFAR are controlled
by pulzs =haping

Power | 102 TW)

B 0 12
Tima (nz) Time (ng)
Vimp = 3.8 to 4 x 107 cmis * ¥y @nd IFAR are Adiabat
Adiabat wx=16t0 3 coﬁmlled by varying o = P'Prarmi
IFAR;5 = 20 to 25 the ablator (7.5 to 12 gm) )
CR=20to 23 and fuel thickness IFAR = ;hell radius/
(40 to 66 grm) shell thickness

*IFAR: in-flight aspsct ratio
TCizaEMi **CR: convergence ratio
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Laser Direct Drive experiments performed on OMEGA are likely dominated by
nonuniformity growth
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*S_P. Regan ef al, Phyz. Rev. Latt. 117, 025001 (2018).
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e Alarge engineering
effort on OMEGA is
devoted to improving
Uniformity

« 3D code development
Including detailed physics
models is in progress

"R. Betti ef al, Phys. Rev. Lett. 114, 255003 [2015); A. Boas et al,, Phys. Rev. Lett. E 84, 011201{R) (2016).



Challenges to ignition remain in mitigating the effects of Laser Plasma Interactions
which do not scale to larger facilities
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Magnetic Direct Drive shows promise of high yields though similar challenges of
nonuniformity and mitigating laser plasma interactions persist
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High-convergence implosion B-field flux compression Thermonuclear neutrons
I"‘— 4.65 ""“—"4' Secondary DT spectrum Reactivity scaling versus T;
&L r ]
I I mdal . . 10 5 ' E
I I T 1 |l® ;  An enhanced Z, with
| | g 1 |E ¢ ? 1| larger current,
| | 2 2 | —F E higher B-field, and
| | 8 e |[Bi0et * ' ‘=4l tritium is planned.
| | 2 - — ' :
I I Z2 lon temperature (keV) e Thegoalisto
| | - demonstrate a yield
I | 1 of ~100 kJ
I | ' Yoo =5np{ov) V
I ~0.1 mm | Meutron energy (MeV) 2 —
CR =40 BR = 0.35 MG-cm Consistent with DD reactivity

M. R. Gomez et al., Phyz. Rev. Lett. 113, 155003 (2014);
P.F. Schmit et ai, Phy=. Rev. Lett. 113, 155004 {2014
TCiasaT K. D. Hahn ef al., Rev. Sci. Inztrum. 83, 043507 (2014).
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Fast ignition benefits from improved flux of fast-electrons and more effective

transport using magnetic fields
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Two color laser can increase the electron
intensity, and reduce electron divergence?

Re-cntrant cone

Imposed magnetic fields can be used to guide
fast-electron transport?

Laser enargy [J1
600 800 1000 1200 1400 1600

W No B-field applied & Open-tip cone
B A B-ield applied & Closed-tip cone
@ B-ield applied & Open-tipe cons

*

&£
=
BITSS2A1 2
3D PIC simulation
E 108 T T T T ! T ! T T é
5 1 omega 100% ] > 5F .
2 , 1 omega 50% 2 omega 50% 1 £
< 0E - - - 2 omega 100% E s |
b Ny 2 omega 50% ] 3 ..
E ] a+ M. -1
3 & =
g 10} 3 T
g : }
° T o, -
@ ] -
o 10°F -
3 1 1 1 1 1 1 ) 1 1 1 1
. 0. 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 111}”
10‘0 '; é - :Ii .;, 5 Laser intensity W/em®l
Energy (MeV)
‘ R NIVERSITY o . N
ey OCHESTER 1 Arikawa et al., ISE Osaka, Wed, IFE/L; 2 Fujioka et al., J




Shock ignition! experiments? are planned for LMJ and the NIF
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Schematic of shock-strength experiment
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. OMEGA experiments? have demonstrated improved yield (x4) compared to a no spike pulse shape with the
same compression

« Experiments indicate the presence of the shock from the spike? (~300 Mbar peak ablation pressure).

 What is the role of hot electrons from SRS and other plasma instabilities on ignition relevant larger

density scale-lengths? NIF experiments* (LLE, AWE, Rutherford) have begun. LMJ experiments®

(CEA, CELIA, ILE, LLE etc.) are planned to study the shock strength and role of laser plasma interactions.

Fiche #
@]

B8 ROCHESTER * Betti et al., Phys. Rev. Lett. 98, 155001 (2007); 2 Theobald et al_
3Nloara ot al Dhve Pav | att 114 (2015 4 Thenhald at al- 5 Ratn

A O




Liquid DT in a foam layer?! relaxes the constraints on hot spot formation by using
the shock to directly heat the high-density vapor
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Results from NIF shots2 show
promise at low CR

CH foam-lined Au near-vacuum
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The leap to IFE requires technological/scientific advances beyond ignition
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Driver development Target injection Reactor design
* Heavy ion beams . iniecti : :
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Summary/Conclusions
Inertial Confinement Fusion (ICF) is a promising route to fusion energy but

challenges remain
uRr
LLE

* Much of the work in ICF is related to proof-of-principle experiments to demonstrate ignition.

» Several different approaches to ICF are being pursued around the world; many challenges are similar
- control of nonuniformity and laser plasma interactions are the primary areas of study

» Several facilities around the work at various stages of development are used for ICF
- In the US: The National Ignition Facility (NIF), the OMEGA lasers, and the Z- machine
- The LMJ in France, and SGIll laser in China are being constructed for ICF.

 The leap from ignition to an IFE power plant requires many technological advances.
- More appropriate drivers
- Target delivery
- Reactor construction

With new facilities coming online, interesting IFE-related physics will emerge over the next decade.
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