

Advances in the understanding of the I-mode confinement regime: access, stationarity, edge/SOL transport and divertor impact

T. Happel,¹ M. Griener,^{1,2} D. Silvagni,¹ S. J. Freethy,^{1,3} P. Hennequin,⁴ F. Janky,¹ P. Manz,¹ D. Nille,¹ F. Ryter,¹ M. Bernert,¹ D. Brida,¹ T. Eich,¹ M. Faitsch,¹ L. Gil,⁵ L. Guimarais,⁵ A. Merle,⁶ J. R. Pinzón,^{1,2} D. Prisiazhniuk,¹ B. Sieglin,¹ U. Stroth,^{1,2} E. Viezzer,⁷ the ASDEX Upgrade Team⁸, the EUROfusion MST1 team⁹

The Improved Energy Confinement Regime (I-mode)

- Obtained with unfavorable magnetic configuration (P_{L-H} high).
- Density stays constant, pronounced temperature increase.
- No ELMs, good impurity transport properties.
- Weakly coherent mode (WCM) dominates edge turbulence spectrum.
- Is considered as a candidate regime for a future reactor.

ASDEX Upgrade IPP

The Improved Energy Confinement Regime (I-mode)

IPP

ASDEX Upgrade

The global picture...

- I-mode Access Conditions
- Extension of Parameter Space and Robustness

The plasma edge...

Intermittent Density Turbulence Bursts

The divertor...

- Heat Fluxes and Fall-off Lengths
- Transient Heat Loads

Summary / Outlook

Access to I-mode by avoiding H-mode

- Ion grad B drift away from active x-point
 - Upper Single Null (USN)
 - Lower Single Null B_t reversed (LSNrev)
 - ⇒ unfavorable config.
 (P_{L-H} about 2x higher than in favorable)

#28985

t = 2.2 s

) P_{L-I} depends on density and magnetic field strength

- Offset-linear dependence on density
- Use 2.35 2.50 T for n_e^{fit}

ASDEX Upgrade IPP

P_{L-I} depends on density and magnetic field strength

- Offset-linear dependence on density
- Use 2.35 2.50 T for n_e^{fit}

ASDEX Upgrade IPP

PL-I depends on density and magnetic field strength

- Offset-linear dependence on density
- Use 2.35 2.50 T for n_e^{fit}
- Variation in magnetic field (1.8 3.0 T)

ASDEX Upgrade

P_{L-I} depends on density and magnetic field strength

- Offset-linear dependence on density
- Use 2.35 2.50 T for n_e^{fit}
- Variation in magnetic field (1.8 3.0 T)

- P_{L-1}/n_e^{fit} reveals dependence on magnetic field strength [Happel PPCF 2017, Hubbard NF 2017]: AUG: $P_{L-1} \propto B_t^{0.39 \pm 0.10}$, C-Mod: $P_{L-1} \propto B_t^{0.26 \pm 0.03}$
- H-mode dependence stronger [Martin JPCF 2008]:
 P_{L-H} ∝ B_t^{0.80}

24 October 2018

Could favor I-mode at strong **B**.

High magnetic Field Strength seems beneficial for Imode

11

[Hubbard 2017 NF, Marmar OV/2-4 (Mon)]

- Variation in magnetic field (2.7 8.0 T).
- At 8 T, no I-H transitions were achieved.
- No I-mode so far on TCV (1.45 T), but search is ongoing.
- On AUG, I-mode window smaller than on C-Mod.

Exten

- Higher densities achieved in 2017 (absolute and GW) through gas puffing.
- Reached n/n_{GW} = 0.70 (transient) n/n_{GW} = 0.58 (stationary)
- Reached $n_{sep}/n_{GW} = 0.24$.
- On AUG, I-mode pedestals are within 1 – 4 kPa electron pressure.

Stationary I-modes through β feedback control

 After L-I transition, P_{NBI} reduced.

ASDEX Upgrade IЪЪ

- Energy and ped. top temperature continue to rise.
- I-H transition at 4.81 s (H₉₈ = 0.92)
- H-I transition at 4.97 s.
- Strong particle losses after H-I transition.

[Happel NME 2018, *submitted*]

Stationary I-modes through β feedback control

 After L-I transition, P_{NBI} reduced.

ASDEX Upgrade

- Energy and ped. top temperature continue to rise.
- I-H transition at 4.81 s (H₉₈ = 0.92)
- H-I transition at 4.97 s.
- Strong particle losses after H-I transition.
- WCM dominates edge turb. spectrum in I-mode

[Happel NME 2018, *submitted*]

The global picture...

- I-mode Access Conditions
- Extension of Parameter Space and Robustness

The plasma edge...

Intermittent Density Turbulence Bursts

The divertor...

- Heat Fluxes and Fall-off Lengths
- Transient Heat Loads

Summary / Outlook

) Turbulence in I-mode shows burst character

 Substantial difference between L-mode and I-mode turbulence behavior. I-mode PDF develops heavy tail at large amplitudes.

[Happel NF 2016, Manz NF 2017]

Turbulence in I-mode shows burst character

 Substantial difference between L-mode and I-mode turbulence behavior. I-mode PDF develops heavy tail at large amplitudes.

[Happel NF 2016, Manz NF 2017]

- **Clear link** shown between WCM and intermittent turbulence bursts.
- Generation mechanism suggested based on Korteweg-de-Vries nonlinearity [Happel NF 2016, Manz NF 2017].
- **Link between WCM and bursts only seen in I-mode**, when WCM dominates the turbulence spectrum.

- MISHKA [Mikhailovskii PPR 1997] stability analysis of L-mode, I-mode and H-mode
- H-mode close to PB-boundary,
 I-mode clearly stable
- Results agree with those from Alcator C-Mod [Hughes NF 2013, Walk PoP 2014]
- Not type I ELMs: PB-stable
- Not type II ELMs: plasmas not strongly shaped
- Not type III ELMs: bursts are intermittent no magnetic precursor

T. Happel

The global picture...

- I-mode Access Conditions
- Extension of Parameter Space and Robustness

The plasma edge...

Intermittent Density Turbulence Bursts

The divertor...

- Heat Fluxes and Fall-off Lengths
- Transient Heat Loads

Summary / Outlook

Equipartition of power loads in the divertor

[Rognlien 1999 JNM, Leonard PPCF 2018]

- In unfavorable configuration, equipartition of divertor power loads expected.
- Due to poloidal / radial E×B drifts.
- Recent systematic investigations on AUG are consistent with expectations.
 [Paradela Perez NME 2018, submitted]

Divertor heat fluxes in L-mode, I-mode and H-mode

- Divertor heat flux profile inferred from infrared thermography measurements.
- H-mode inter-ELM profile narrower than L-mode profile.
- I-mode profile "in between".

[Happel NME 2018, *submitted*]

ASDEX Upgrade IPP

Divertor heat fluxes in L-mode, I-mode and H-mode

- Divertor heat flux profile inferred from infrared thermography measurements.
- H-mode inter-ELM profile narrower than L-mode profile.
- I-mode profile "in between".
- Late I-mode heat flux profiles can be of high amplitude, correspond to intermittent events.
- Fit function from [Eich 2011 PRL, 2013 NF].

[Happel NME 2018, submitted]

ASDEX

Upgrade

Power fall-off length between L- and H-mode values

- λ_q in I-mode between those of L-mode and H-mode.
- Results consistent with C-Mod [Terry JNM 2013, Brunner NF 2018 & Umansky EX/P6-9 (Thu)].

Power fall-off length between L- and H-mode values

- λ_q in I-mode between those of L-mode and H-mode.
- Results consistent with C-Mod [Terry JNM 2013, Brunner NF 2018 & Umansky EX/P6-9 (Thu)].
- $λ_q \approx 2/7 \lambda_T \Rightarrow$ Spitzer conductivity.
- λ_n (L-mode) $\approx \lambda_n$ (I-mode) $> \lambda_n$ (H-mode)
- $λ_{T}$ (L-mode) > $λ_{T}$ (I-mode) > $λ_{T}$ (H-mode)
- Reminiscent of pedestal formation in temperature, but not density
 [Sun PPCF, accepted for publication,
 [Happel NME 2018, submitted].

ASDE>

Upgrade

Bursts deposit their energy during short time windows

- Temperature evolution of divertor tile affected by I-mode events and type-I ELMs.
- Temperature increase due to type-I ELMs up to 300 K.

Bursts deposit their energy during short time windows

- Temperature evolution of divertor tile affected by I-mode events and type-I ELMs.
- Temperature increase due to type-I ELMs up to 300 K.

- Temperature increase due to burst at least 20 K.
- Uncertainty due to limited IR time resolution (IR: 2.5 ms [5 µs exposure] vs. burst ~ 50 µs).

ASDE>

Upgrade

- The I-mode confinement regime combines good energy confinement with L-mode like particle transport and no ELMs.
- Stationary and robust NBI heated I-modes achieved.
- Parameter space extended to higher densities (absolute and GW).
- **Δ** from stationary heat loads is between those of L-mode and H-mode.
- Transient events linked to the WCM generate divertor heat loads.
- In 2019, AUG foresees experiments on I-mode detachment and pellet fuelling.