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Abstract
The gyrokinetic neoclassical code XGCa finds that the parallel pressure balance in the diverted scrape-off layer does

not follow that from fluid description based on the CGL theory. Here a gyrofluid equation for pressure balance in a low-
collisionality tokamak SOL is derived, for use in interpreting this difference. The new pressure balance equation allows
determining physical processes which dominate the setting of pressure in the divertor, utilizing closuer information directly
from a kinetic code which reduces the number of assumptions going into a fluid code. This pressure balance equation is applied
to a DIII-D H-mode discharge, and its found that the total pressure balance is much better matched using the gyrofluid equation.
Electrons are shown to be dominantly adiabatic, while ions have multiple contributions to pressure balance, including radial
fluxes due to parallel energy flow and E × B motion.

1. Introduction

Predicting scrape-off layer (SOL) divertor pressure based on upstream pressure (or vice-versa) remains a key need
to ensure future fusion devices can achieve the high global pressure needed for a burning plasma while limiting the
heat and particle fluxes to material surfaces to acceptable levels. More and more, complex simulation codes are
being turned to with the goal of including the multiphysics needed to accurately simulate the SOL. Understanding
the relative importance of various physics included in these complex simulations is a challenging but important
task.

Kotov and Reiter [1] and a recent paper by Stangeby[2] recognized this need, to treat these code simulations as
’experiments’, which benefit from formatting the simulation results in simple terms. This not only gives insights
into the physical processes at work in the simulation, but also serves as a validation check that the code is solving
the equations you’ve specified. These papers focused on formatting SOL fluid codes (e.g. SOLPS) outputs into
two-point modelling (2PM)[3] like expressions, which relate upstream and downstream quantities such as pressure
in the SOL. At its base, 2PM is simply derived from a fluid momentum balance, with a number of extensions
accounting for particle/momentum/energy sources, cross-field transport, etc.[3]

A simple application of 2PM was done with code output from an XGCa simulation of a low collisionality DIII-
D[4] H-mode discharge[5, 6]. The total pressure downstream did not match the simple 2PM expectations of
constant total pressure along a flux surface in the SOL, particularly in the near-SOL (here total pressure refers to
the static pressure plus dynamic pressure, i.e. ptot = p + mnu2

‖
), see Figure 1. Simplified expressions containing a

CGL viscosity approximation, and neutral source term did not resolve the discrepancy, see Figure 1 again. It was
obvious a more thorough expression based on the kinetic equations of motion in XGCa was needed to determine
the physics responsible.

The purpose of this paper is to derive such an expression for the pressure balance in the SOL, utilizing outputs from
the XGCa code. XGCa is a gyrokinetic neoclassical code[7] (i.e. uses a gyrokinetic equation of motion[8], but
only solves for the n = 0 potential, no turbulence), and as such has many subtleties when forming full fluid equa-
tions, due to the need for a pullback transformations on the 5D guiding-center distribution function ( f (R, v⊥, v‖, t)
).

Indeed, previous work[9] attempting to calculate a full pressure tensor including off-diagonal terms (similar to the
"pressure tensor unfolding" technique[10]) produced certain large, unbalanced terms which may require higher
order terms in the Taylor expansion of the full distribution function in order to enable use. To avoid these issues,
we instead in this paper focus on forming gyrofluid equations by directly taking moments of the gyrokinetic
equations of motion in XGCa.
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Figure 1: Pressure balance in the SOL, plotted along flux surfaces (plotted versus Z, the normal cylindrical coordinate height
coordinate, at each point on the flux surface). The left figure shows the ratio of pressure to target pressure, and the right figure
shows the same but with CGL viscosity and neutral source terms added.

2. XGCa

TODO Describe briefly XGCa, and specifically anything relevant to the current paper.

3. Gyrofluid parallel momentum equation

Gyrofluid formulations have a long history in fusion physics[11, 12, 13, 14]. The basic concept is to take moments
of the gyrokinetic equation directly, and thereby derive fluid-like equations for conservation of particles, momen-
tum, energy, etc., which still retain various kinetic effects such as finite Larmor radious (FLR) effects. Usually
gyrofluid equations are used in a "predictive" fashion, where closures are selected to deal with higher order mo-
ments in the equations. Here the gyrofluid equation we derive will be used in an "interpretive" manner, where
we will use the guiding-center distribution function from XGCa to calculate all moments in the gyrofluid equa-
tion, avoiding the need for closures, and allowing us to understand terms which are important in the momentum
equation (and hence pressure balance).

We begin with the electrostatic gyrokinetic equations of motion used in XGCa[8]:

∂t f + Ẋ · ∇ f + v̇‖ · ∂v‖ f = S ∗( f )

Ẋ = 1
D

[
v‖b̂ +

mv2
‖

qB ∇ × b̂ + 1
qB2 B ×

(
µ∇B − qĒ

)]
v̇‖ = − 1

mD

(
b̂ +

mv‖
qB ∇ × b̂

)
·
(
µ∇B − qĒ

)
D = 1 +

mv‖
qB b̂ ·

(
∇ × b̂

) (1)

Here f = f (R, v‖, µ, t) is the guiding-center distribution functions, S ∗ is a source term including collisions, neu-
trals, heating, etc., E = −∇Φ is the gyroaveraged electric field, and other variables have their normal meaning.
Note importantly that this equation was derived for a (R, v‖, µ, t) system, so that e.g. the ∇ operator is done holding
(v‖, µ) constant. For ease of taking moments of this equation, we can write in a conservative form:

∂t (B∗ f ) + ∇ ·
(
B∗Ẋ f

)
+ ∂v‖

(
B∗v̇‖ f

)
= B∗S ( f ) (2)

where B∗ = BD, and we have used the observation that ∂tB∗ + ∇ ·
(
B∗Ẋ

)
+ ∂v‖

(
B∗v̇‖

)
= 0. We now form the

gyrofluid parallel momentum equation by multiplying Equation 2 by mv‖ and integrating over velocity space,∫
d3v =

∫
dv‖dv⊥v⊥. After some algebra, we arrive at the desired gyrofluid parallel momentum equation:

∂t
(
mnu‖

)
+ b̂ · ∇

(
p‖ + mnu2

‖

)
−

(
b̂ · ∇B

B

) (
p‖ + mnu2

‖
− p⊥

)
− b̂ ·

〈
qĒ

〉
f
+

+ m
qB

[(
b̂ · ∇ × b̂

)
∂t

(
p‖ + mnu2

‖

)
+

(
∇ × b̂

)
·
(
∇〈mv3

‖
〉 f −

∇B
B 〈mv3

‖
〉 f + ∇B

B 〈mv‖v2
⊥〉 f − 2〈v‖qĒ〉 f

)
+

+
(
b̂ × ∇B

B

)
· ∇〈 1

2 mv‖v2
⊥〉 f + b̂ · ∇ ×

〈
v‖qĒ

〉
f

]
=

〈
mv‖

〉
S + m

qB

(
b̂ · ∇ × b̂

) 〈
mv2
‖

〉
S

(3)
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the notation 〈A〉 f =
∫

dvA f is used, and the following definitions for moments:

n =
∫

dv f nu‖ =
∫

dvv‖ f
p‖ =

∫
dvm(v‖ − u‖)2 f p⊥ =

∫
dv 1

2 mv2
⊥ f

(4)

In order to have an expression for the pressure directly, we will performe a line integral along the parallel direction,∫
d`‖. Applying this integral to Eq. 2, and rearranging terms, we arrive at an equation similar to past equations[6]:

p‖,tot |`‖=x

p‖,tot |`‖=0
+

∑
j

F j = 1 (5)

where we have written p‖,tot = p‖ + mnu2
‖
, and where each F j represents the integral of one of the terms from

Equation 2 (excluding the parallel gradient of pressure term), normalized to (p‖,tot/B)|`‖=0. The F j terms are as
follows:

F∂t =
−

∫ x
0 d`‖∂t(mnu‖)+ m

qB (b̂·∇×b̂)∂t(p‖+mnu2
‖
)

p‖,tot |`‖=0
Fvisc =

−
∫ x

0 d`‖(b̂· ∇B
B )

(
p‖+mnu2

‖
−p⊥

)
p‖,tot |`‖=0

FE‖ =
−

∫ x
0 d`‖b̂·〈E〉 f

p‖,tot |`‖=0
Fsource =

∫ x
0 d`‖〈mv‖〉S + m

qB (b̂·∇×b̂)
〈
mv2
‖

〉
S

p‖,tot |`‖=0

F∇mv2
‖

=

∫ x
0 d`‖ m

qB (∇×b̂)·∇〈mv3
‖
〉 f

p‖,tot |`‖=0
F(∇×b̂)· ∇B

B
=

∫ x
0 d`‖ m

qB (∇×b̂)· ∇B
B

(
〈mv‖v2

⊥〉 f−〈mv3
‖
〉 f

)
p‖,tot |`‖=0

F2〈v‖qĒ〉 f
=
−

∫ x
0 d`‖ m

qB (∇×b̂)·2〈v‖qĒ〉 f

p‖,tot |`‖=0
F∇〈 1

2 mv‖v2
⊥〉 f

=

∫ x
0 d`‖ m

qB (b̂× ∇B
B )·∇〈 1

2 mv‖v2
⊥〉 f

p‖,tot |`‖=0

Fb̂·∇×〈v‖qĒ〉 f
=

∫ x
0 d`‖ m

qB (b̂× ∇B
B )·b̂·∇×〈v‖qĒ〉 f

p‖,tot |`‖=0

(6)

4. Gyrofluid pressure balance in XGCa

We now use the integrated gyrofluid momentum equation (Equation 5) with the guiding-center distribution func-
tions, fe and fi, and field quantities from an XGCa simulation of a lower collisionality H-mode DIII-D discharge.
This is the same discharge and simulation setup as Ref. [5], however the simulation has been redone to include
additional diagnostic outputs useful for calculating Equation 5, such as the source term and gyroaveraged electric
field.

The sum of electron and ion pressure and parallel momentum equation terms (the LHS of Equation 5) for a flux-
surface in the near-SOL (ψN = 1.002) are plotted in Figure 2. For comparison, the total pressure normalized to the
target pressure is plotted also,

ptot |`‖=x

ptot |`‖=0
. Complete pressure balance would result in the plot being one everywhere

(unity line). As seen, the gyrofluid formulation is a significant improvement, especially upstream from the divertor,
within a 20-40% maximum deviation from the unity line. The main deviation is caused by the ions; the electrons
are always better matched. Also, this deviation mainly comes about when including the region near the X-point.
If the flux surface were split into two regions, below and above the X-point, the pressure balance is very close to
the unity line. For flux surfaces further away from the X-point, the pressure balance is much closer to unity. A
discussion of the remaining deviation in the near-SOL flux surfaces will be in the Conclusions section.

Looking at the individual terms which make up the pressure balance in Figure 3, we can first see one of the reasons
why the electrons are better balanced; for this simulation the electrons are overwhelmingly adiabatic, balancing
completely with a single term, the parallel electric field.

The ions on the other hand have significant contributions to the pressure balance from numerous terms. As
expected, parallel pressure is the dominant term, and non-negligible contributions are made from the parallel
electric field, source, and viscosity terms. However, the largest terms are found in opposing sets of terms: the
first from the electric field, (∇ × b̂) ·

[
−2〈v‖qE〉 f

]
+ b̂ · ∇ × 〈v‖qE〉 f , which gives a positive contribution, and the

second from parallel energy flux terms, (∇ × b̂) · ∇〈mv3
‖
〉 f +

(
b̂ × ∇B/B

)
· ∇〈0.5mv‖v2

⊥〉 f , which gives a negative
contribution. Combined these give a large net negative contribution to the pressure balance, which overcomes the
positive slope of the parallel pressure term, leading to the flattening out in regions away from the divertor in Figure
2, which bring the pressure balance back to the unity level.

3



IAEA-CN-123/45

Figure 2: Pressure balance (Equation 5) for a near-SOL flux surface (labelled "gyrofluid"; in blue). The green ptot line shows
for comparison the large deviation from constant pressure along the flux surface.

Figure 3: Individual terms from the electron pressure balance (Equation 5) for a near-SOL flux surface
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Figure 4: Individual terms from the ion pressure balance (Equation 5) for a near-SOL flux surface

5. Conclusions

A gyrofluid parallel momentum equation has been derived from the XGCa gyrokinetic equations of motion, for
use in interpreting the relative importance of terms in setting the pressure balance in the SOL. As was shown,
for this discharge the electrons are dominantly adiabatic in the SOL, while the ions have significant contributions
from radial flux into/out of the flux surface volume of parallel energy flux, and due to E × B motion. Accounting
for all terms brings the ion (and hence total) pressure balance much closer to the expected unity level.

Future work will focus on determining why the pressure balance isn’t completely at unity, as would be expected
since this gyrofluid equation is based directly on the equations of motion used in the XGCa code. The main issue
to investigate is the numerical integration in regions near the X-point, where the small Bθ leads to a very long
connection length, which with any noise in the signals may cause deviations. In general, numerical issues, includ-
ing in the post-processesing and/or noisy data, certainly need to be further assessed, especially when balancing
large terms with opposite signs. Because of the higher order moments (e.g. energy flux), grid resolution tests
would ensure these moments are calculated accurately. Additionally, further improvements to XGCa algorithms
for source handling (especially wall source) and SOL electric potential solver may provide some benefits, though
aren’t foreseen to make up for this difference.
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