FIP/1-3Ra

TECHNOLOGIES FOR REALIZATION OF LARGE SIZE RF SOURCES FOR –VE NEUTRAL BEAM SYSTEMS FOR ITER -Challenges, experience and path ahead

Jaydeep Joshi et al jaydeep.joshi@iter-india.org

FIP/1-3Rb

PROGRESS IN ITER NEUTRAL BEAM FACILITY

Toigo et al vanni.toigo@igi.cnr.it

FIP/1-3Rc

DEMONSTRATION OF 1 MV VACUUM INSULATION FOR THE VACUUM INSULATED BEAM SOURCE IN THE ITER NB SYSTEM

Kojima et al kojima.atsushi@qst.go.jp

Presented by: Jaydeep Joshi on behalf of FIP/1-3Ra, FIP/1-3Rb and FIP/1-3Rc

27th IAEA-FEC, Gandhinagar, October 2018

Outline

- 1. Negative ion systems in ITER
- 2. ITER Neutral Beam Test Facility (NBTF)
- 3. Indian test facility (INTF)

Technologies for realization of large size RF source for -ve Neutral Beam 4. system for ITER- Challenges, experience and path ahead Development of 'angled' grid segment, Welding technologies, a. Post insulators Overview of components produced till now b. Deviation and non-conformities С. d. Learnings **Progress in ITER Neutral Beam Facility** 5. SPIDER- components, installation and first operation a. MITICA- mechanical components, power supplies and tests b. **NBTF Status** С. Demonstration of 1 MW Vacuum insulation for the vacuum insulated 6. Beam source in the ITER NB System **Schematics** a. Electric Field Analysis for BS and HVB b. Design of shields for the BS and HVB in the vessel C. d. Demonstration of Improvement by Shields Summary 7.

High precision Mechanical system

Installation, commissioning and operation of complex system

Ultra High voltage systems

Negative ion systems in ITER

- 2 (+1) HNB: Heating Neutral Beam
- 1 DNB: Diagnostic Neutral Beam
- NBTF: <u>Neutral Beam Test Facility</u>
 - Indian Test Facility

NBTF hosts the two experiments: the negative ion source **SPIDER** and the 1:1 prototype of the ITER injector **MITICA** Each experiment is inside a concrete biological shield against radiation and neutrons produced by the injectors Thanks to these shielding the assembly/maintenance area will be fully accessible also during experiments

Indian Test Facility (INTF)

Refer contribution number FIP P1-40 for R&D STATUS OF INDIAN TEST FACILITY FOR ITER DNB CHARACTERIZATION

FIP/1-3Ra

TECHNOLOGIES FOR REALIZATION OF LARGE SIZE RF SOURCES FOR –VE NEUTRAL BEAM SYSTEMS FOR ITER -Challenges, experience and path ahead

Jaydeep Joshi et al jaydeep.joshi@iter-india.org

FIP/1-3Rb

PROGRESS IN ITER NEUTRAL BEAM FACILITY

Toigo et al vanni.toigo@igi.cnr.i

FIP/1-3Rc

DEMONSTRATION OF 1 MV VACUUM NSULATION FOR THE VACUUM INSULATED BEAM SOURCE IN THE ITER NB SYSTEM

Kojima et al kojima.atsushi@qst.go.jp

Presented by: Jaydeep Joshi on behalf of FIP/1-3Ra, FIP/1-3Rb and FIP/1-3Rc

27th IAEA-FEC, Gandhinagar, October 2018

RF Ion Source for –ve Neutral Beam system

- Designed to produce a 100keV, 60A, 60MW Hydrogen beam
- To measure the Helium ash content in the Deuterium–Tritium (D-T) phase of the ITER machine using the Charge Exchange Recombination Spectroscopy (CXRS)

Requirements and related challenges

Requirement

Realization of accelerator with focusing requirement of beam at a distance of 20.665m

Challenge

Overall assembly tolerance of +/- 0.2mm Aperture positioning of 50 microns Flatness of 40 microns Aangles within the tol. Of +/-0.002

ITER Vacuum Handbook for water to valor boundary application	acuum	Design of full penetration weld joint with 100% volumetrically inspectable configuration			
Functional and configurational require	ments	Customized design of alumina insulators to provide the mechanical connection between grid mounting flanges and electrical isolation upto 90kV			
Radioactive environment		restricted chemic	n and procurement with the al composition of Cobalt (Co), I Tantalum (Ta) for adaptability to nvironment		
QA		Extensive quality Handling of Devia	interventions tion and Non-conformities		
© ITER-India, IPR (India) J. Joshi et al., 2	First of its kind	manufacturing	7	7	

Technology development for 'angled' accelerator grid segment

Production of grid

ITER-India

Typical values of the achieved dimensions

	Beam group angles (Deg)			Beam group plane flatness (microns)			Aperture position (microns)					
	BG 1	BG 2	BG 3	BG 4	BG 1	BG 2	BG 3	BG 4	BG 1	BG 2	BG 3	BG 4
Nominal Value	0.665	0.222	0.222	0.665	0			0				
Targeted Tolerance	+/-0.002	+/-0.002	+/- 0.002	+/- 0.002	40				50			
Deviation- Segment 3	-0.003	0.010	-0.003	-0.011	197	136	86	116	21	23	25	38
Prototype Grid	-0.072	0.031	-0.014	-0.091	166	106	81	75	42	35	67	96

- Production with incorporating the recommendations-> led to the best possible methodology of manufacturing
- Three segments of Plasma Grid segments have been produced till now.
- Effect of minor deviation on functionality is assessed to move ahead for production

ITER-India

Welding Technology development

Compatibility * with respect to IVH

Penetration on one side, $s = 20 \pm 3$ mm

0.4

RT image

of Weld seam

Weldability*

(a) front side

(b) root side As welded seam

examinable configuration Macro-picture of the weld seam * This design along with the configuration and its realization has been protected and patent is filed for the same.

Repairability

- An important aspect of production of grid
- Requires customized solution for repair, depending on the type of defect and location of defect
- Re-fuse the weld seam,
 within the parameter
 range→ Separate
 qualification has been
 performed to ensure the
 strength as equivalent to
 the original weld seam

Dissimilar material welding

Full penetration EBW of CuOF to Inconel joint with strength in the range of 234 to 261 MPa

Full penetration CuOF to CuOF EBW joint with 100% volumetric examinable configuration

© ITER-India, IPR (India) J. Joshi et al., 27th IAEA-FEC, Gandhinagar, October 2018

Post Insulator Manufacturing

Post Insulator Manufacturing

Prototyping: To establish (1) manufacturing route (2) to qualify them for mechanical and electrical specification (3) to assess the feasibility of stringent tolerances on the assembly

Mechanical test

Electrical test

Total 40 Nos. of Post insulators have been manufactured with end flange flatness of 60 microns in assembled condition

Major components produced till now

TER-India

Plasma Grid Segments-3 Nos.

Soft Iron Plate segment Rear Driver Plate

GG Flange

Technologies involved:

- High precision milling of copper
- Vacuum Brazing
- Electron beam welding of copper and dissimilar material
- Copper Electro deposition
- Ceramic to metal joining
- Heavy fabrication of stainless steel
- Deep hole drilling

Electron Dump Panels- 10 Nos.

EG Mounting Flange

Post Insulators-40 Nos.

Plasma Box components and Faraday shield

© ITER-India, IPR (India)

Non-conformities and deviation

Extensive Quality interventions:

Tool to ensure and establish the close adherence of manufacturing activities with respect to laid procedures

Each NC and DR to be supported by technical assessments (like FEA, experimentations, prototyping, imposing additional inspection / test etc.) and check that they do not impact the overall functionality of the system

Summary

- **'angled' grid segment manufacturing remains a challenge**, even after establishing the complete manufacturing procedure through 1:1 prototype. Each segment has to be handled with careful monitoring at all the stages of production
- Welding for vacuum boundary connection according to ITER requirements, is one of the most critical activity in terms of process selection, configuration and its qualification for timely execution of the project
- Inspite of sufficiently detailed and thoroughly detailed specification, there are possibilities of deviations to suit the manufacturing needs, which have to be accommodated without impact on the function of components
- **Prototyping** is essential for the components where no past experience is available to establish the feasibility and to unfold the uncertain areas of manufacturing
- It is essential to be a 'Technical Partner' to 'Contractor' for every challenge they come across to fulfil the specification requirement, for the success of such a challenging project.
- Significant learnings generated from this manufacturing is expected to provide the guideline on manufacturing design for upcoming ITER ion sources with similar challenges for seamless manufacturing with reduced time and efforts.

FIP/1-3Ra

TECHNOLOGIES FOR REALIZATION OF LARGE SIZE RF SOURCES FOR -VE NEUTRAL BEAM SYSTEMS FOR ITER -CHALLENGES, EXPERIENCE AND PATH AHEAD

Jaydeep Joshi et al jaydeep.joshi@iter-india.org

FIP/1-3Rb

PROGRESS IN ITER NEUTRAL BEAM FACILITY

Toigo et al vanni.toigo@igi.cnr.ii

FIP/1-3Rc

DEMONSTRATION OF 1 MV VACUUM NSULATION FOR THE VACUUM INSULATED BEAM SOURCE IN THE ITER NB SYSTEM

Kojima et al kojima.atsushi@qst.go.jp

Presented by: Jaydeep Joshi on behalf of FIP/1-3Ra, FIP/1-3Rb and FIP/1-3Rc

27th IAEA-FEC, Gandhinagar, October 2018

ENERGY SPIDER: full scale prototype of HNB/DNB source

(II) ITER-India

/iter

- Optimisation of production of negative ions in terms of:
- > Density
- > Uniformity
- > Stability
- Co-extracted electrons

	Unit	Н	D
Beam energy	keV	100	100
Maximum Beam Source pressure	Pa	< 0.3	< 0.3
Uniformity	%	±10	±10
Extracted current density	A/m^2	>355	>285
Beam on time	S	3600	3600
Co-extracted electron fraction (e ⁻ /H ⁻) and (e ⁻ /D ⁻)		< 0.5	<1

SPIDER Components

Vacuum-insulated beam source

SPIDER power supplies

Acceleration Grid Power Supply

Toigo et al., 27th IAEA-FEC, Gandhinagar, October 2018

SPIDER beam source installation

- In March 2018
 - all connections and vacuum vessel lid closed
 - leak test of hydraulic circuits from external flanges started

- SPIDER operation started on 4 June 2018
- After some tuning, first plasma ignition on 6 June 2018 with 1/4 source

Characterisation of source plasma

FUSION FOR ENERGY

ITER-India

V_{ext}, V_{acc}

Toigo et al., 27th IAEA-FEC, Gandhinagar, October 2018

EVERGY MITICA full scale prototype of ITER HNB

(I) ITER-India

LICER JARA

Optimisation of neutral beam in terms of:

- Performances
- > Reliability
- > Availability

	Unit	Η	D
Beam energy	keV	870	1000
Acceleration current	А	46	40
Max Beam Source pressure	Pa	0.3	0.3
Beamlet divergence	mrad	≤7	≤7
Beam on time	S	3600	3600
Co-extracted electron fraction (e^{-}/H^{-}) and (e^{-}/D^{-})		< 0.5	<1

MITICA components

Toigo et al., 27th IAEA-FEC, Gandhinagar, October 2018

AGPS-DCG insulating tests: 1.2MV (1h),1.06MV (5h)

UNIT

6

6

2nd STEP 1060kV-5 HOURS

First HV insulating tests successfully passed

• SPIDER

- Experimentation started in 2018
- Plants and diagnostics entering into operation one by one
- Characterisation of source and beam in progress
- Increase of parameters planned from 2019

- MITICA
 - High voltage power supplies almost completed and under test on-site
 - Other auxiliary plant systems under installation and/or commissioning phase
 - All procurement contracts for mechanical components in progress
 - Expected delivery on site of Beam Source in 2022

۲

FUSION FOR ENERGY

(I) ITER-India

ILER I PAN

FIP/1-3Ra

TECHNOLOGIES FOR REALIZATION OF LARGE SIZE RF SOURCES FOR -VE NEUTRAL BEAM SYSTEMS FOR ITER -CHALLENGES, EXPERIENCE AND PATH AHEAD

Jaydeep Joshi et al jaydeep.joshi@iter-india.org

FIP/1-3Rb

PROGRESS IN ITER NEUTRAL BEAM FACILITY

Toigo et al vanni.toigo@igi.cnr.i

FIP/1-3Rc

DEMONSTRATION OF 1 MV VACUUM INSULATION FOR THE VACUUM INSULATED BEAM SOURCE IN THE ITER NB SYSTEM

Kojima et al kojima.atsushi@qst.go.jp

Presented by: Jaydeep Joshi on behalf of FIP/1-3Ra, FIP/1-3Rb and FIP/1-3Rc

27th IAEA-FEC, Gandhinagar, October 2018

- JADA delivers 3 sets of 1 MV power supply and an 1 MV accelerator of beam source for ITER NB.
 - So far, insulation technology for DC 1 MV in gas, oil, water and air has been developed. Vacuum insulation of ultra-high voltage of 1MV is the most critical issue.

<u><Recent experiment for 1 MV vacuum insulation></u>

- Voltage holding capability of HVB was based on the *empirical scaling for plane and coaxial electrodes*.
- Available voltage was limited to 0.7 MV due to breakdowns at 1.3 m single gap where >1 MV was expected.
- \rightarrow Effect of locally concentrated electric field (E_L) on corner was not fully understood

<Scaling for design of corner region>

- EV value (Breakdown indicator) has been investigated by using several cylindrical configurations.
- Allowable E_LV is found to be limited according to surface area (~R)
- → Empirical scaling to design the electric field on corner.

These empirical scaling for plane, coaxial and corner are easily applicable to the design of the ITER BS and HVB.

Voltage holding capability of vacuum insulated beam source has been analyzed by the empirical scaling.

FIP/1-3Rc

<Electric Field Analysis for BS and HVB >

• Based on the empirical scaling, EV is analyzed for the BS and HVB in the vessel.

Intermediate shields for the beam source has been developed as measure for the 1 MV vacuum insulation.

FIP/1-3Rc

<Design of shields for the BS and HVB in the vessel>

- An intermediate shield can be simplified as plane, coaxial and corner regions.
- Gap and electric field on corner is optimized to maximize the total voltage holding capability
- Number of the shields has been analyzed.

- Required gap length between shields and electric filed at the corner has been designed.
- Estimated voltage has been improved from 0.6 MV to >1 MV.

1 MV vacuum insulation has been achieved by applying the developed intermediate shields for the HVB.

FIP/1-3Rc

<Demonstration of Improvement by Shields>

- Intermediate shield for the HVB has been developed by taking into account the all scaling.
- Voltage holding tests in vacuum were carried out by using the HVB with the shields.

• Voltage holding capability has been much improved from 0.7 to 1 MV.

- The design basis of the 1 MV vacuum insulation with intermediate shields has been demonstrated.
- This design technique is directly applicable to the BS for ITER too.

SUMMARY

Successful demonstration of collaborative efforts in the area of technology developments, installation, operation and physics experiments \rightarrow towards the realization of ITER NB system

THANK YOU