

NSTX/NSTX-U Theory, Modeling and Analysis Results & Overview of New MAST Physics in Anticipation of First Results from MAST Upgrade

IAEA FEC, Oct. 23, 2018

J.E. Menard for S.M. Kaye (PPPL), J. Harrison (CCFE) and the NSTX-U and MAST-U Teams

Missions of NSTX(-U) and MAST(-U)

- Exploit unique Spherical Tokamak (ST) parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for plasmamaterial interface (PMI)
- Explore ST physics towards reactor relevant regimes (e.g., Fusion **Nuclear Science Facility and Pilot** Plant)

Snowflake/X

NSTX(-U) and MAST address urgent issues for fusion science, ITER and next-step devices

- Spherical Tokamaks (STs) can investigate turbulence over an extended range in β (tens %)
 - Electrostatic and electromagnetic effects
- STs Energetic Particle (EP) physics spans phase space expected in Burning Plasmas
 - $v_{fast}/v_{Alfvén} vs \beta_{fast}/\beta_{tot}$
 - Develop predictive and control methods
- Reduced aspect ratio expands range of field line connection length to study and mitigate divertor heat flux

MAST-U will emphasize boundary physics

Maximum Parameters

	MAST	MAST-U
l _p	≤ 1.3	2 MA
RB_T	≤ 0.44	0.64 m-T
P _{NBI}	≤ 3.5	10 MW
$ au_{\text{pulse}}$	≤ 0.7	5 s

On and off-midplane NBI

- Flexible divertor with Super-X capability for exhaust research
- Off-midplane 3D magnetic coils for edge instability control

IAEA FEC OV/5-5R

NSTX-U will emphasize core physics

Maximum Parameters

5 s

NSTX NSTX-U

- $I_p \leq 1.4 2 MA$
- $RB_{T} \leq 0.47 \quad 0.94 \text{ m-T}$
- $P_{NBI} \leq 6 15 MW$
 - ≤ 6 6 MW

 $\tau_{pulse} \leq$

 P_{RF}

Conducting plates can suppress global kink instabilities

• High B_T (1 T at R_0) \rightarrow projected largest range in β and (lower) v_* in an ST

• Greater stability $(\beta_n/l_i \le 14)$ + flexible NBI \rightarrow high non-inductive current

New tangential NBI

for j(r) control

This talk will cover recent complementary results from NSTX(-U) and MAST

- Core transport and stability physics
- Energetic particle physics/mode stability

Boundary and divertor physics

• Future plans

This talk will cover recent complementary results from NSTX(-U) and MAST

Core transport and stability physics

- ST confinement trends differ from those at higher aspect ratio
 - NSTX/MAST: $\tau_{E} \simeq I_{p}^{0.5}B_{T}^{-1} \simeq v_{*}^{-0.8}$ (ITER-Basis: $\tau_{E} \simeq I_{p}^{-1}B_{T}^{-0} \simeq v_{*}^{-0}$)
- Stability control methods necessary for high-β operation

Normalized collisionality (~n/T²)

Core: Measurements and theory help in understanding the turbulence that underlies confinement trends in STs

- ITG turbulence often suppressed by flow shear
 - MAST BES measurements of ITG ñ show flow shear breaks symmetry of turbulence in space (tilt) and amplitude (skewed PDF)
- Collisionality dependence controlled by electron transport due to
 - electrostatic dissipative TEM/electromagnetic microtearing modes on NSTX
 - electrostatic ETG on MAST

MAST

- ETG sims initially produce streamer-like structures before forming 'vortex streets'
 - Collisionality dependence due to damping of zonal flows

[G. Colyer et al., PPCF **59** 055002 (2017)] [M. F. J. Fox et al., PPCF **59** 034002 (2017)] [F. van Wyk et al., PPCF **59** 114003 (2017)]

Core: Multi-scale and non-local effects potentially important for understanding underlying turbulence

- Ion-scale (ITG/TEM) non-linear simulations (GTS) for NSTX L-mode illustrate importance of global effects
 - Transport from global (GTS) lower than from *local* (GYRO) simulations → profile shearing effects at large ρ_{*} important
 - 1/ρ_{*} ~ 75 (NSTX), 200 (DIII-D), 350 (JET)
- Electron-scale (ETG) non-linear simulations predict significant Q_e; close to expt'l
 - Similarity in Q_{e, high-k} and Q_{i, low-k} indicates cross-scale coupling may be important

Core: Disruption Event Characterization and Forecasting (DECAF) code used to provide a cross-machine comparison of disruptivity

DECAF analysis of disruption event

IAEA FEC OV/5-5R

- Shots analyzed at 10 ms intervals during Ip flat-top
- MAST: 8,902 plasmas analyzed; NSTX: 10,432 plasmas
- Supports published result that disruptivity doesn't increase with β_{N}
- Disruptivity plots provide important information, but can be misleading when used incorrectly
 - Plasma conditions can change significantly between first problem detected and when disruption happens
 - **Circles** mark the key region to study with DECAF: where events that lead to disruptions (**X's**) start

[Sabbagh et al., EX/P6-26 (DECAF)]

This talk will cover recent complementary results from NSTX(-U) and MAST

Energetic particle physics/mode stability

- Energetic particle-driven instabilities may reflect those in ITER, next-step devices
- Will show examples of fast ion distribution effects by sawteeth, high-frequency AE to develop understanding, predictive capabilities, and control methods
- Instabilities in both frequency ranges may be important for ITER

~ (EP-instability drive)/(EP-instability damping)

Energetic Particles: Sawteeth on **MAST** and **NSTX-U** have a significant effect on the fast particle population

- MAST neutron camera measurements show drop in neutron rate (fast ion distribution) across profile
 - Modeling indicates that sawteeth have comparable effect on both trapped and passing particles [M Cecconello et al., PPCF 60 055008 2018]
- FIDA & solid-state NPA measurements on NSTX-U indicate that passing particles strongly expelled from core by sawteeth [Liu, Nuc. Fusion (2018)]

11

Little effect on trapped particles

MAST – Neutron Camera

12

Energetic Particles: Different sawtooth models on **MAST** and **NSTX-U** show agreement with experiment

- Full reconnection model (Kadomtsev) consistent with measurements in MAST
 - Inversion of real and synthetic FIDA data show expulsion of trapped and passing particles from core
- Simple sawtooth models cannot reproduce spatial redistribution of fast particles in NSTX-U [Kim, EX/P6-33]
 - "Kick" model [Podesta, PPCF (2014)], based on orbit-following calculations of fast ions, lead to better agreement

Energetic Particles: Different sawtooth models on **MAST** and **NSTX-U** show agreement with experiment

- Full reconnection model (Kadomtsev) consistent with measurements in MAST
 - Inversion of real and synthetic FIDA data show expulsion of trapped and passing particles from core
- Simple sawtooth models cannot reproduce spatial redistribution of fast particles in NSTX-U [Kim, EX/P6-33]
 - "Kick" model [Podesta, PPCF (2014)], based on orbit-following calculations of fast ions, lead to better agreement

Are differences due to differences in injection energy, phase space distribution of EP?

Energetic Particles: Progress in developing tool for phase-space engineering of EP-driven instabilities in **NSTX-U**

- High frequency global Alfvén Eigenmodes (GAEs) suppressed by off-axis beam injection [Fredrickson PRL (2017), Nuc. Fus. (2018)]
- Non-linear HYM simulations show unstable counter-rotating GAEs
 - Maximum growth rates for toroidal mode numbers -7 to -11
 - Predicted frequencies match measurements
 - Peak saturation amplitudes $\delta B/B \sim 5e-3$
 - Effect on electron transport under investigation

Energetic Particles: Progress in developing tool for phase-space engineering of EP-driven instabilities in **NSTX-U**

- High frequency global Alfvén Eigenmodes (GAEs) suppressed by off-axis beam injection [Fredrickson PRL (2017), Nuc. Fus. (2018)]
- Non-linear HYM simulations show unstable counter-rotating GAEs
 - Maximum growth rates for toroidal mode numbers -7 to -11
 - Predicted frequencies match measurements
 - Peak saturation amplitudes $\delta B/B \sim 5e-3$
 - Effect on electron transport under investigation
- EP phase space engineering will be explored in MAST-U using on/off-midplane NB and off-midplane RMP coils
 IAEA FEC OV/5-5R

This talk will cover recent complementary results from NSTX(-U) and MAST

- Boundary and divertor physics
 - Turbulence studies at midplane and in divertor SOL for aid in understanding processes controlling heat flux amplitude and profile

Boundary: Gas puff imaging & theory being used to study edge turbulence near the midplane in **NSTX**

- GPI measurements of edge turbulence show dipole-like
 2-D spatial correlations with large negative regions (blue)
- Semi-analytic model assuming blob-hole pairs shows similar
 2D correlation patterns, dipole flip across separatrix [Myra, PPCF (2018)]

 Edge turbulence is being better understood through a combination of semi-analytic models and numerical simulation (e.g. XGC1)
 IAEA FEC OV/5-5R

Divertor: Fast camera imaging of the divertor provides new insights into SOL turbulence

- Non-linear 3D drift-fluid simulations (STORM/BOUT++) of SOL turbulence performed in realistic MAST geometry [Militello TH/7-1]
 - Reproduces filaments seen in fast camera videos of main chamber and divertor
 - SOL D_{α} profiles well described by superposition of independently moving filaments
 - Quiescent region in SOL near Xpoint has been identified [Walkden et al., Nuc. Fus. **57** 126028 (2017)]
 - Synthetic diagnostics developed to enable direct comparison with experiments

Background subtracted fast camera data

BOUT++ simulation

IAEA FEC OV/5-5R

Divertor: Fast camera imaging of the divertor provides new insights into SOL turbulence

- Divertor leg fluctuations observed by fast imaging in NSTX-U
 - Intermittent; localized to bad curvature side
- Evidence for X-point disconnection
 - Inner and outer filament legs not correlated
 - Divertor filaments/midplane blobs not correlated
- Simulations with ArbiTER code find unstable resistive ballooning modes [Baver, CCP (2016)]
 [Scotti, Nuc. Fusion (2018)]

Images in CIII emission

Rendering

IAEA FEC OV/5-5R

This talk will cover recent complementary results from NSTX(-U) and MAST

Future plans

Expected benefits of Super-X divertor will be tested during first experimental campaign of MAST-U

- Super-X expected to improve exhaust mitigation and control of detachment front position
- Detachment in Super-X expected at lower density than in conventional

Parallel heat flux gradients along Super-X leg should improve detachment control

• Scales with B_{x-pt}/B_{target} ; can be higher is STs (~3) than at conventional aspect ratio (~1-2)

IAEA FEC OV/5-5R

MAST-U preparing for operation

- MAST-U presently baking out; modifying TF linkages
- Expected physics operation Autumn 2019
- Detailed characterization of intrinsic error field carried out to optimize correction and broaden operating space

- New diagnostics
 - **Divertor**: 850 Langmuir probes, divertor TS, IR & visible cameras, bolometers
 - Energetic particles: ssNPA, FILD

NSTX-U Recovery underway

- NSTX-U operated for 10 weeks in 2016, achieving good H-mode performance, surpassing magnetic field and pulse duration of NSTX
- Run ended prematurely due to divertor PF fault
- Full repair will consist of installing improved PF coils, graphite PFCs to handle heat fluxes of highpower, long-pulse scenarios, minimized error fields to increase reliability [Gerhardt, FIP/P3-63]
- Projected to commence operations in early 2021
 - Study transport and stability physics at high-β/low ν_{*} (Bτ ~ ν_{*}^{-0.8})
 - Demonstrate full non-inductive operation (j(r) control with NBI)

Close collaboration between NSTX-U and MAST-U on developing startup scenarios

- Vacuum field calculations support magnetic calibrations and inductive startup scenario development
- Procedure for producing MAST-U first plasma being developed using the PPPL-LRDFIT code
 - Results from NSTX(-U) provide basis for first-plasma scenarios on MAST-U
 - Extended on-site (CCFE) visits facilitate collaboration

Summary: NSTX(-U) and MAST address urgent issues for fusion science, ITER and next-step devices

- Core transport & turbulence studied over an extended range of β and v_{*}
 - Electrostatic and electromagnetic effects drive strong favorable v_* scaling
 - Multi-scale effects (low- & high-k) must be considered
- Energetic particle effects and instabilities studied in portions of parameter space expected for α-burning plasmas
 - Low and high frequency modes can have profound effect on EP distribution
 - Predictive models and phase-space engineering techniques being developed
- Boundary and divertor studies address processes controlling heat flux width
 - Filamentary structures/turbulence
 - Heat flux mitigation through innovative divertor designs
- When operation commences, NSTX-U and MAST-U will be the most capable devices in the world-wide ST program

Relevant IAEA contributions follow

NSTX(-U)/MAST(-U) related IAEA presentations

1.	J. Menard: Fusion energy development utilizing the Spherical Tokamak OV/P-6	(Mon AM)
2.	R. Lunsford: Electromagnetic particle injector FIP/P1-51	(Tues AM)
3.	M. Podesta: Reduced EP transport models EX/1-2	
4.	E. Belova: Numerical simulations of GAE suppression TH/P2-16	(Tues PM)
5.	S. Pamela: ELM and ELM-control simulations OV/4-4	
6.	S. Gerhardt: NSTX-U Recovery physics and engineering FIP/P3-63	(Wed AM)
7.	V. Menon: Performance of large and small R/a fusion tokamaks FIP/P3-60	
8.	N. Bertelli: Impact of H ⁺ on HHFW in NSTX-U TH/P4-13	(Wed PM)
9.	G.Z. Hao: Centrifugal force driven low-f modes in STs TH/P5-13	(Thurs AM)
10.	T. Rafiq: Effects of microtearing modes on Te evolution in NSTX TH/P5-10	
11.	S. Sabbagh: Disruption characterization and forecasting EX/P6-26	(Thurs PM)
12.	N. Ferraro: EF impact on mode locking and divertor heat flux in NSTX-U EX/P6-40	
13.	E. Fredrickson/M. Podesta: GAE stability dependences on fast ion distribution EX/P6-32	
14.	D. Kim: Fast ion redistribution by sawteeth on NSTX-U EX/P6-33	
15.	L. D-Aparacio: Rotation-induced electrostatic potentials and density asymmetries in NSTX EX/P6-33	
16.	R. Goldston: Development of Li vapor box divertor for controlled plasma detachment FIP/3-6	
17.	T. Brown: A toroidal confinement facility to study liquid lithium divertor	(Fri AM)
18.	A. Hakim: Continuum g-k simulations of NSTX SOL turbulence with sheath-limited geometries TH/P7-3	33
19.	I. Krebs: Nonlinear 3D simulations of VDEs in tokamaks TH/P8-10	(Fri PM)
20.	F. Militello: Predicting Scrape-Off Layer profiles and filamentary transport for reactor relevant devices	TH/7-1
	IAEA FEC OV/5-5R	

NSTX(-U) and MAST research address urgent issues for fusion MOVE TO BACKUP? science, ITER and next-step devices

- STs can investigate turbulence over an extended range in β (tens %)
 - Electrostatic and electromagnetic effects at large ρ_{*}
- STs EP physics spans phase space expected in Burning Plasmas
 - Develop predictive and control methods
- Reduced connection length and surface area can lead to increased q_{target} in conventional divertors in STs
 - Developing strategies to mitigate heat fluxes in STs critical

Normalized collisionality (~n/T²)

NSTX(-U) and MAST research address urgent issues for fusion MOVE TO BACKUP? science, ITER and next-step devices

- STs can investigate turbulence over an extended range in β (tens %)
 - Electrostatic and electromagnetic effects at large ρ_{*}
- STs EP physics spans phase space expected in Burning Plasmas
 - Develop predictive and control methods
- Reduced connection length and surface area can lead to increased q_{target} in conventional divertors in STs
 - Developing strategies to mitigate heat fluxes in STs critical

~ (EP-instability drive)/(EP-instability damping)

Core: Disruption Event Characterization and Forecasting (DECAF) algorithm being developed for stable operation

- DECAF utilizes physics-based models as much as possible to identify event chain leading to disruptions in a time-evolving fashion [Sabbagh et al., EX/P6-26]
 - Couple to real-time control system for stable operation, disruption mitigation

p(r)

peaks

PRP

(+.068s)

n=1

locks

LTM-n1

(+.045s)

n=1

appears

MHD-n1

(0.490s)

DECAF event chain

large

 dI_n/dt

IPR

(+.073s)

Multi-institutional effort [**NSTX, MAST**, KSTAR, DIII-D, TCV (so far)]

hits

wall

WPC

(+.073s)

IAEA FEC OV/5-5R

DIS

(+.077s)

Energetic Particles: Microturbulence is a mediator of EP instabilities on NSTX-U

- High β_{fast}, v_{fast}/v_{Alfvén}>1 provide significant drive for enhanced waveparticle and nonlinear mode-mode interactions (chirping, avalanches)
 - Seen predominantly at lower than at higher aspect ratio
- Microturbulence can increase scattering of resonant fast ions to reduce chirping and avalanching [Duarte Nuc. Fusion (2018)]
 - Global GTS non-linear simulations support theoretical prediction

Counter-TAEs can be destabilized by off-axis co-NB injection from 2nd NB line

- Single NB source from 2nd NBI
- Low power, P_{NB}~1MW

- Off-axis NBI results in broad/hollow NB ion density profile
- A transition is observed from co-TAEs only to cntr-TAEs

Details of fast ion distribution explain destabilization of *counter*-TAEs by co-NBI

 Single NB source from 2nd NBI

 Low power, P_{NB}~1MW

- Stability analysis with TRANSP + kick model recovers observations
- Drive results from competition between gradients in energy and canonical momentum

IAEA FEC OV/5-5R

Boundary: Particle confinement control and turbulence being studied in **MAST**

- Application of Resonant Magnetic Perturbations (RMPs) reduces particle confinement
 - τ_{ion} reduced by ~20% in L-mode (with n=3 RMP) and 30% in H-mode (with n=4 RMP)
 H-mode

- First estimates of radial wave number of Geodesic Acoustic Mode in an ST in an ohmic L-Mode in good agreement with global 2-fluid simulations [Hnat, PPCF (2018)]
 - Oscillation localized to boundary that can influence L-H transition dynamics
 - 10 kHz, $k_r \rho_p \simeq -0.15$, $v_r \simeq 1$ km/s, located 2 cm inside the separatrix

IAEA FEC OV/5-5R

Divertor Physics: SOL turbulence can contribute of cross-field transport: being studied in both MAST and NSTX-U

- MAST SOL density profiles are well described by the superposition of independently moving filaments
 - Quiescent region in the SOL near X-point
- Divertor leg fluctuations observed by fast imaging in NSTX-U
 - Intermittent; localized to bad curvature side
 - Connected to divertor target plate
- Evidence for X-point disconnection
 - Inner and outer filament legs not correlated
 - Divertor filaments/midplane blobs not correlated

Divertor Physics: Fast camera imaging of the divertor provides new insights into SOL turbulence

- SOL turbulence being studied in both MAST and NSTX
 - MAST SOL density profiles are well described by the superposition of independently moving filaments
- Quiescent region in the SOL near the X-point has been identified
- Divertor leg fluctuations observed by fast imaging in NSTX-U
 - Intermittent; localized to bad curvature side
- Evidence for X-point disconnection
 - Inner and outer filament legs not correlated
 - Divertor filaments/midplane blobs not correlated

[F. Militello et al., PoP **25** 056112 2018] [N. Walkden et al., NF **57** 126028 2017]

Divertor: Linear and non-linear simulations of SOL turbulence being performed in NSTX-U and MAST

- Linear simulations with ArbiTER code for NSTX-U find unstable resistive ballooning modes [Baver, CCP (2016)]
 - Higher mode numbers on outer than on inner legs
- Non-linear 3D drift-fluid simulations (STORM/BOUT++) of SOL turbulence performed in realistic MAST geometry
 - Reproduces filamentary structures seen in fast camera videos in main chamber and divertor

Divertor Physics: Intermittent field-aligned filaments localized to bad curvature side of divertor legs in **NSTX-U**

- Divertor leg fluctuations observed by fast imaging [Scotti, Nuc. Fusion (2018)]
 - 10-30 kHz, k_{pol}ρ_i~0.01-0.1, v_{pol}~1-2 km/s
- Connected to divertor target plate
- Evidence for X-point disconnection
 - Inner and outer filament legs not correlated
 - Divertor filaments/midplane blobs not correlated
- Simulations with ArbiTER code find unstable resistive ballooning modes [Baver, CCP (2016)]
 - Higher mode numbers on outer than on inner legs

Images in CIII emission

39

IAEA FEC OV/5-5R

Edge: NSTX is exploring L-H transition physics

- Production term, P, related to Reynold's stress
- Find P<0 just prior to L-H in NSTX
 - Energy transfer from ZF to turbulence
- Inconsistent with Predator-Prey model [Diallo, Nuc. Fusion (2017)]

