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Motivation of research
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§ Magnetic islands are frequently observed in tokamak plasmas
– MHD instabilities such as neoclassical tearing mode (NTM)
– The external magnetic perturbation field

§ Effect of islands on transport is not trivial
– Properly controlled islands are shown to be beneficial, but explosive 

growth of islands leads to disruptions
§ This complicated behavior is thought to 

result from various interactions between 

§ Experimental validation/demonstration is more than necessary
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Outline

§ Part 1: Turbulence intensity is redistributed by the magnetic island
– Full 2-D picture of turbulence power

• More than ”weak around the O-point and strong near the X-point”
– Flow shear generated by the island or turbulence can be 

responsible for this turbulence power redistribution

§ Part 2: Role of the strong turbulence intensity
– Heat flow into the magnetic island; a potentially beneficial?
– Severe minor disruption
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Experimental set-up for the controlled island experiment

§ Discharge conditions

– 1 MW neutral beam injection (NBI) 
L-mode diverted plasma

– Plasma current = 700 kA and 
q95 = 4.6

– Average density = 1.3—1.6 x 1019 m-3

– The !=1 (middle) magnetic 
perturbation field is applied to induce 
a locked magnetic island
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Diagnostics: electron cyclotron emission imaging (ECEI) 
diagnostics
§ Multi-dimensional diagnostics are essential to understand the 

complicated dynamics correclty
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Large imaging optics

Heterodyne 
detector array

Each ECEI system is composed of 24x8 channels
Each channel measures local (~2x2 cm2) intensity of ECE 
which is proportional to local electron temperature

G.S. Yun et al., RSI (2010) & RSI (2014)



!" profile, turbulence, and flow measurements using the 
ECEI diagnostics

§ #$ profile from cross calibration
§ #$ turbulence intensity from cross coherence 

between ECEI channels
– Cross coherence %&' ( = * +,-$.$/0 123+03405,/ 6,7$.

0,042 6,7$. (5/+2395/: 422 /,5;$)
§ Flow from local dispersion relation 

measurement using ECEI channels
– Cross phase =&' ( = >(() ⋅ @
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!" profile modification due to the m/n=2/1 island

§ The flat (steep) #" profile inside (outside) the magnetic island
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!" profile modification due to the m/n=2/1 island
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2D inhomogeneous !" turbulence intensity near the island 

10

z 
[c

m
]

R [cm]

20

205         210

10

0

-10

-20

#"
[keV]

1.0

0.8

0.6

0.4

0.2

0

cross coherence btw
vertically adjacent channels

ECEI 
channel grid

$%&

$%'



2D inhomogeneous !" turbulence intensity near the island 
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2D inhomogeneous !" turbulence intensity near the island 
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§ Inside the island, 
no significant 
turbulence intensity

§ Outside the island, 
significant 
turbulence intensity 
in both inner () < )+,)
and outer () > )+/)
regions

)+,

)+/

J.-M. Kwon et al., PoP (2018) & TH/8-1
found TEM () < )+,) and ITG () > )+/) unstable

For similar experimental observations
K. Zhao et al., NF (2015)
L. Bardóczi et al., PRL (2016)



Bad channels
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Absence of !" turbulence in the O-point regions

§ Slowly rotating RMP experiment demonstrates full picture of the #"
turbulence around the island
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Absence of !" turbulence in the O-point regions

§ Slowly rotating RMP experiment demonstrates full picture of the #"
turbulence around the island
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2D flow measurements near the island
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2D flow measurements near the island
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2D flow measurements near the island

§ The 2-D vertical group 
velocity measurements 
found 
– "# is stronger 

near the separatrix
– The radial shear of "#

increases towards 
the O-point direction

– Reversal across the island
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For other experimental measurements
K. Ida et al., PRL (2001)
T. Estrada et al., NF (2016)
K. Zhao et al., NF (2017)



The strong !×# shear (≥ %&' s-1) can suppress turbulence in 
the O-point regions
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Turbulence intensity modulation by the NTM

§ Significant bicoherence between the NTM rotating frequency (20 kHz) 
and the broad turbulence (50—150 kHz)
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For other experimental observations
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Outline

§ Part 1: Turbulence intensity is redistributed by the magnetic island
– Full 2-D picture of turbulence intensity

• More than ”weak around the O-point and strong near the X-point”
– Flow shear generated by the island or turbulence can be 

responsible for this turbulence intensity redistribution

§ Part 2: Role of the strong turbulence intensity
– Heat flow into the magnetic island; potentially beneficial
– Minor disruption
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Heat flow into the magnetic island with turbulence increase

§ When the turbulence intensity is strong enough, !" transport events 

occurs 
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Heat flow into the magnetic island with turbulence increase

§ When the turbulence intensity is strong enough, !" transport events 

occurs 
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Heat flow into the magnetic island with turbulence increase

§ 2D !"#/⟨"#⟩ images found the fast heat flow from outside to inside of 
the island: this may indicate turbulence spreading
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Minor disruption with stronger turbulence intensity

§ Turbulence near the proximity of the X-point can be vulnerable to 
minor disruption (explosive growth of TM or stochastization)
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Minor disruption with stronger turbulence intensity

§ Turbulence intensity further increases and spreads to the X-point 
before minor disruption occurs
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Summary
§ Spatial distribution of the turbulence is determined 

by the combined effect of the temperature gradient 
and the flow shear around the island

27

X-point

O-point

Turbulence increases at the X-point 
à minor disruption

Turbulence spreads into the island
à profile peaking

O-point

X-point

20

15

10

5

0

-5

-10

-15

-20

z 
[c

m
]

205 210 215
R [cm]

Summed cross
coherence image

!"#/〈"#〉 image20

10

0

-10

-20
205 210

R [cm]

z 
[c

m
]

20

18

16

14

12

10

8

6

4

2

0

Turbulence intensity Flow

15

10

0

-5

-15

z 
[c

m
]

5

-10

6

4

2

0

-2

-2

-6

R [cm]
205    210

[km/s]

§ Minor disruption or profile peaking can occur 
due to the strong turbulence intensity outside 
the magnetic island 

X-point

O-point

M.J. Choi et al., NF (2017)

shift

J.-M. Kwon et al., PoP (2018)



Acknowledgements

§ I acknowledge helpful discussions with Dr. S. Zoletnik, Dr. J. Seol, 
Dr. J.-H. Kim, Dr. M. Leconte, and Dr. L. Bardóczi, Dr. H. Jhang
and references
– Ida PRL 2001 & PRL 2018, Rea NF 2015, Zhao NF 2015 & NF 2017, Bardoczi 

PRL 2016 & PoP 2017, Estrada NF 2016, Morton APS 2016, Jiang NF 2018, 
Sun PPCF 2018

– Ishizawa NF 2009, Poli NF 2009 & PPCF 2010, Hornsby PoP 2010, Hu NF 2016, 
Izacard PoP 2016, Navarro PPCF 2017, Kwon PoP 2018, Hahm PPCF 2004 & 
JKPS 2018

§ Supports: Korea Ministry of Science, ICT and Future Planning under 
Contract No. OR1509 and NRF Korea under Grant No. NRF-
2014M1A7A1A03029865 and NRF-2014M1A7A1A03029881



15

10
+

15

10
++

15

10

Another evidence for the increasing flow towards the 
separatrix
§ 2D measurement of the turbulence correlation length found that 

the poloidal correlation length increases toward the separatrix
– It can result from stronger poloidal flow toward the separatrix
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Back-up: change of fluctuation power 
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Back-up: cross coherence
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Back-up: different turbulence distributions
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Another evidence for the increasing flow towards the 
separatrix
§ 2D measurement of the turbulence correlation length found that 

the poloidal correlation length increases toward the separatrix
– It can result from stronger poloidal flow toward the separatrix
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Back-up: time trace
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Back-up: another cross phase
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