Contribution ID: 64

Type: Oral

Transport characteristics of deuterium and hydrogen plasmas with ion internal transport barrier in LHD

Thursday 25 October 2018 08:50 (20 minutes)

A remarkable achievement of $T_{i0} = 10$ keV with $Z_{eff} = 2$ was obtained in Large Helical Device (LHD). In order to clarify transport characteristics in ion internal transport barrier (ion ITB) formation with isotope effect, a dataset of pure deuterium (D) $(n_D/n_e > 0.85)$ and pure hydrogen (H) $(n_H/n_e > 0.85)$ plasmas for high-ion-temperature (high- T_i) regime were analyzed, and two mechanisms of transport improvement were characterized. A significant reduction of ion heat transport in D plasmas was observed in comparison between D and H plasmas, indicating non-gyroBohm mass dependence. The dependence of the heat transport on temperature ratio (T_e/T_i) and normalized T_i -gradient $(R/L_{Ti} = -(R/T_i)(dT_i/dr))$ was investigated in the core region, in which gyrokinetic simulations with GKV code predicts the destabilization of ITG modes [1]. The T_e/T_i dependence shows ITG-like property, while a significant deviation from the ITG-like property is found in the R/L_{Ti} dependence. Moreover, the density fluctuation is well correlated with the heat transport dependence on T_e/T_i and R/L_{Ti} , indicating suppression of ITG mode in large R/L_{Ti} regime and resultant ion ITB formation. The similarity of instabilities found by GKV indicates that both ITG suppression and isotope effect contribute to production of high- T_i plasmas ($T_{i0} \sim 10$ keV) with multiple-ion conditions.

Country or International Organization

Japan

Paper Number

EX/5-1

Author: Prof. NAGAOKA, Kenichi (National Institute for Fusion Science)

Co-authors: Dr NAKANO, Haruhisa (National Institute for Fusion Science); Dr TAKAHASHI, Hiromi (National Institute for Fusion Science); Dr YAMAGUCHI, Hiroyuki (National Institute for Fusion Science); Dr IDA, Katsumi (National Institute for Fusion Science); Dr TANAKA, Kenji (National Institute for Fusion Science); Mr MUKAI, Kiyofumi (National Institute for Fusion Science); Prof. YOKOYAMA, MASAYUKI (National Institute for Fusion Science); Prof. OSAKABE, Masaki (National Institute for Fusion Science); Dr NUNAMI, Masanori (National Institute for Fusion Science); Dr YOSHINUMA, Mikirou (National Institute for Fusion Science); Dr NAKATA, Motoki (National Institute for Fusion Science); Dr SEKI, Ryosuke (National Institute for Fusion Science); Dr MURAKAMI, Sadayoshi (Departement Nuclear Engineering, Kyoto University); Dr OHDACHI, Satoshi (National Institute for Fusion Science); Dr MORISAKI, Tomohiro (National Institute for Fusion Science)

Presenter: Prof. NAGAOKA, Kenichi (National Institute for Fusion Science)

Session Classification: EX/5, PPC/1 - TH/3 Integrated Modelling & Transport

Track Classification: EXD - Magnetic Confinement Experiments: Plasma–material interactions; divertors; limiters; scrape-off layer (SOL)