DIII-D Research Towards Establishing the Scientific Basis for Future Fusion Reactors

by C.C. Petty for the DIII-D Team

Presented at the 27th IAEA Fusion Energy Conference Ahmedabad, India

October 22-27, 2018

DIII-D Research Towards Establishing the Scientific Basis for Future Fusion Reactors

2

DIII-D Research Towards Establishing the Scientific Basis for Future Fusion Reactors

First Demonstration of Shell Pellets – a Novel and ITER Relevant Technique for Disruption Mitigation

 Shell pellet transports impurities to core before ablating, releasing impurity payload

"Inside-out" thermal quench mitigation

See N. Eidietis post-deadline

Energetic Electron-Driven Whistler Modes are a Potential Cause of Runaway Electron Dissipation

• HXR pinhole camera measurements of critical E-field threshold are reproduced by modeling when high frequency modes are included

Energetic Electron-Driven Whistler Modes are a Potential Cause of Runaway Electron Dissipation

• HXR pinhole camera measurements of critical E-field threshold are reproduced by modeling when high frequency modes are included

Reduced-Physics "Kick Model" Accurately Predicts Fast Ion Transport from Tearing Modes and Strong AE Activity

- Using experimental 2/1 island width, kick model in TRANSP replicates measured neutron rate reduction
 - Good agreement also found between kick model and fast ion density profiles from FIDA

Dramatic improvement in predictive simulations of EP transport

Rotation Profile Predicted for ITER With Edge Intrinsic Torque and TGLF Transport has Stabilizing Influence on Turbulent Transport

- DIII-D experiments project ITER edge intrinsic rotation to be 3–10 krad/s (
)
 - Similar ρ_{*} scaling of intrinsic angular momentum is found for ECH and NBI H-mode plasmas

Gyrokinetic simulations find enough E×B shear to double the D-T fusion gain in ITER compared to no shear simulations

Energy Transport in Detached Divertors is Carried by Convection

 Flat T_e profiles below 10 eV for detached divertors indicate convection-dominated transport

Energy Transport in Detached Divertors is Carried by Convection

Modeling shows E×B drift contributes significant poloidal transport

ExB Drifts Can Also Drive Step-Like Onset of Divertor Detachment

• UEDGE simulations highlight the nonlinear interaction between E×B drifts and particle fluxes, causing a sudden jump to detachment

Jaervinen EX/9-3

ExB Drifts Can Also Drive Step-Like Onset of Divertor Detachment

• UEDGE simulations highlight the nonlinear interaction between E×B drifts and particle fluxes, causing a sudden jump to detachment

Improved Understanding of High-Z Erosion in DIII-D Divertor Identifies Important Mechanisms for ITER

 Energetic D⁺ and C⁶⁺ from pedestal top dominate W sputtering during ELMs

> W erosion in ITER from ELMs will be mainly caused by T, D ions with pedestal energy

Outline

Closed Divertor Exhibits Higher Separatrix Density Relative to Pedestal Density Than Open Divertor

Closed divertor can maintain OEDGE and SOLPS modeling shows closed divertor has high ∇T_{e} even for large outward shift of ∇n_{e} ~50% less core ionization 6 Closed Open 5 Closed L_{Te} n_e (10¹⁹ m⁻³) c c c r divertors give = L_{ne}/ Closed 3 insight to ETG critical ne 2 pedestal $\eta_{e,\text{exp}}$ structure with Open opaque SOL 0 0.85 0.90 0.95 1.00 1.05 Ψ_N A. Moser, APS 2018 H.Q. Wang, Nucl. Fusion 2018 Shift of ∇n_{ρ} relative to ∇T_{ρ} ($\%\Psi_{N}$)

15

New SAS Divertor Concept Demonstrates Improved Divertor Power Dissipation Compatible With Steady-State Tokamaks

• Small angle slot (SAS) divertor transitions to dissipative divertor conditions with T_e <10 eV at lower n_e

New SAS Divertor Concept Demonstrates Improved Divertor Power Dissipation Compatible With Steady-State Tokamaks

- Small angle slot (SAS) divertor transitions to dissipative divertor conditions with $T_e < 10 \text{ eV}$ at lower n_e
- Exhibits better core confinement at high n_e

Extending n=3 RMP ELM Suppression to Low Torque Finds Edge Rotation Threshold of ~10 km/s

Critical radial location of ω_E rotation zero-crossing (i.e., E_r=0) observed at threshold

In ITER, edge rotation to maintain E,=0 in pedestal top for ELM suppression is ≥0.4 krad/s (expect 3-10 krad/s from intrinsic torque)

H-Mode Threshold Power Increases More With n=3 RMP at Low v_* Due to Reduced E_r Well From Edge Stochasticity

- P_{LH} can increase by >50% at ITER-relevant v_*
 - Of concern for H-mode access in ITER

19

H-Mode Threshold Power Increases More With n=3 RMP at Low v_* Due to Reduced E_r Well From Edge Stochasticity

- P_{LH} can increase by >50% at ITER-relevant v_*
 - Of concern for H-mode access in ITER
- Significant reduction in edge E_r well by RMP fields may explain P_{LH} dependence

- Low-k turbulence (BES) increases with applied RMP

A simple stochastic transport model explains the E_r reversal and its v_{*} dependence

In Super H-Mode, High Pedestal Pressure and Core Confinement Can Be Sustained With Strongly Radiating Divertor

- Record fusion gain for DIII-D (Q_{DT,eq} ≈ 0.45) is transiently achieved
 - Super H-mode occurs in strongly shaped plasmas where pedestal pressure increases with density

In Super H-Mode, High Pedestal Pressure and Core Confinement Can Be Sustained With Strongly Radiating Divertor

- Record fusion gain for DIII-D (Q_{DT,eq} ≈ 0.45) is transiently achieved
 - Super H-mode occurs in strongly shaped plasmas where pedestal pressure increases with density
- During D₂ and N₂ puffing, high pedestal pressure (~20 kPa) is sustained in radiative divertor with large reduction in divertor T_e

Super H-mode is compatible with both high fusion performance and high separatrix density for divertor solutions

Outline

Key Advance is Stable ITER Baseline Scenario Equivalent to $Q_{fus} \approx 10$ With Zero Injected NBI Torque

- In past, steep "well" in current profile near q=2 made ITER baseline scenario at zero-torque unstable
 - Solution is to modify initial current profile by slowing
 *I*_P ramp and delaying
 H-mode transition

Key Advance is Stable ITER Baseline Scenario Equivalent to $Q_{fus} \approx 10$ With Zero Injected NBI Torque

- In past, steep "well" in current profile near q=2 made ITER baseline scenario at zero-torque unstable
 - Solution is to modify initial current profile by slowing *I*_P ramp and delaying H-mode transition
- Stable zero-torque operation obtained, but fusion gain (β₁τ_E) doesn't improve below q₉₅=3.7

Wide-Pedestal (ELM Stable) QH-Mode Initiated and Sustained With ≈0 NBI Torque, Also With Dominant Electron Heating

 New zero-torque startup replaces strong counter NBI torque with n=3 NTV torque

Wide-Pedestal (ELM Stable) QH-Mode Initiated and Sustained With ≈0 NBI Torque, Also With Dominant Electron Heating

- New zero-torque startup replaces strong counter NBI torque with n=3 NTV torque
- Wide-pedestal QH-mode also sustained by replacing most NBI power with ECH
 - − Central ECH creates electron ITB $(T_e \approx 12 \text{ keV})$

Wide-pedestal QH-mode is attractive scenario for ITER: no ELMs, low v_{*}, zero torque, electron heating but needs lower q₉₅

High β_P Scenario Extended to Reactor-Relevant q_{95} ~6 While Maintaining an ITB Using Negative Magnetic Shear

- Enhanced confinement (H_{98y2} up to 1.8) and ITB from Shafranov shift stabilization of turbulence
 - E×B shear is low at foot of ITB

First time achievement: self-consistent simulation evolving n_e, T_e, T_i, q predicts non-inductive Q~5 in ITER with day-one heating, zero rotation

McClenaghan EX/4-3

DIII-D is Integrating Radiative Divertor into "Steady State" High- β_{N} Hybrid Scenario

- Off-axis ECH gives Neon density peaking factor of ~2.6 while central ECH gives flat Neon profile
 - β_N up to 3.8, H_{98y2}=1.6, q_{min}≈1

Turco EX/3-3; Petrie EX/P6-11

DIII-D is Integrating Radiative Divertor into "Steady State" High- β_N **Hybrid Scenario**

Off-axis ECH gives Neon density peaking factor ۲ of ~2.6 while central ECH gives flat Neon profile

− β_N up to 3.8, H_{98y2}=1.6, q_{min}≈1

Both Neon-based and Argon-based mantles achieve 40% reduction in between-ELM divertor heat flux

Future DIII-D Facility Enhancements Will Strengthen Steady-State and Boundary/PMI Research

31

DIII-D Program is Advancing the Scientific Basis for Future Fusion Reactors

- Improving scientific basis for disruption and runaway electron mitigation
- Integrating detached and radiative divertors with high performance core
- Promising new high-gain and steady-state scenarios for ITER

