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RABBIT: Real-time model for the NBI fast-ion distribution

Motivation:

● Fast ion distribution function is required for instance:
● Heating profiles for transport calculations
● pressure and current-drive for equilibrium 

reconstructions

● Sophisticated simulation codes exist (e.g. 
TRANSP/NUBEAM based on Monte Carlo), but long 
computation time ( ~ 30 s per time-step )

● → Too slow for real-time applications
(e.g. discharge control systems, real-time transport 
solvers like RAPTOR)

● → Develop fast model
Rapid Analytical Based Beam Injection Tool – 
RABBIT [M. Weiland, NF 2018]
( ~ 20 ms per time-step )

TRANSP fast-ion distribution function
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Kinetic equation

Kinetic equation for distribution function f(x, v, t)

+ Source

Orbit effects

collisions 
(e.g. slowing down, 
pitch angle scattering)

Source = NBI 
depositionTime dependence 

(=0 for steady state 
solution)
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ Source

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)

5. Applications
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Beam deposition (birth profile)

● Injection of fast neutrals into the plasma → Ionization → 
newly “born” fast ion

● Fast-ion birth rate = - (beam attenuation rate)
● Calculation of beam attenuation:

BESFM Code by A. Lebschy, R. Dux, IPP
● We use the simplest geometry: NBI as thin line
● Good approximation for attenuation – for birth profile, 

we need to take into account the beam width:

NUBEAM 
MC calculation

center of beam = 
calculation grid 
for BESFM

● Assume a Gaussian broadening with standard deviation σ(l),  l = coordinate along beam,
σ(l) defined by NBI parameters (e.g. divergence)
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Analytic model for the poloidal beam width

● We assume Gaussian spreading along 
orange line (standard deviation σ)

● Assume circular concentric flux surfaces

● Transformation between flux coordinate ρ 
and geometric radius r based on ratio at B:
r(ρ) = ρ * ( rb / ρb )

● → Crossings    with ρ-cells can be 
calculated analytically

● → Contribution into i-th cell ρi:

● Correction for plasma elongation:
Scale beam width σ according to elongation 
b/a at B.

B

h1l

h2l

h2u

rb
beam

θ αβ

h1u

ρi

ρi

poloidal plane R

z
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Beam deposition (birth profile) with beam-width correction

● Taking into account a Gaussian broadening of the beam 
leads to good agreement with TRANSP/NUBEAM
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ Source

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)

5. Applications
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Analytic solution of the Fokker-Planck equation

● Solution [Cordey/Core 74]: Legendre polynomials

vC, v0 : critical, injection velocity

source:
injected ions

(permanently)

   source term                            
     S: deposition, v0: injection velocity (mono-energetic)

K(ξ): broad pitch distribution              

slowing down pitch angle scattering speed diffusion

● Uniform plasma solution, i.e. each radial cell is independent of each other, 
no particle trapping etc.

● A correction for speed diffusion is applied above injection energy.
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Density and heating profiles

● In the end we are interested in integrals of f, e.g.:
Heating power (to electrons and ions), fast-ion pressure and current drive

● These integrals can also be solved analytically. Due to orthogonality of the 
Legendre polynomials, only first few moments are necessary (l=0, 1) 

● E.g. fast-ion density:

● Profile shapes do not (yet) agree well, due to missing orbit-effects

● Under-estimation in the core, over-estimation at the edge

heating to 
ions

heating to 
electrons
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ Source

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)

● In MC codes (e.g. NUBEAM)

● MC representation of source

● Calculate orbits for each MC marker

● Apply collision operator during 
orbit steps

● For real-time: Only ad-hoc treatment of 
orbit effects possible

5. Applications
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How to include the effect of first fast-ion orbit

● Orbit effects lead to a broadened deposition (towards the plasma 
center) and to changes of the pitch-distribution in the velocity space

● They can be taken into account, by averaging the deposition over the 
first orbit:

➔ assume that slowing-down process starts on random position of 
first orbit

➔ neglect orbit effects during slowing down

example for banana orbit:

birth position
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● Monte-Carlo orbit-average:

● Take MC representation of birth distribution

● Calculate orbit for each MC marker (e.g. ~5000)

● → too slow for real-time purposes (takes ~1s)

● Possible solutions:

● Either: Use approximation formulas for the orbits

● Or: Reduce number of orbits (strongly)

Monte-Carlo orbit-average is too slow for real-time applications
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Orbit average in real-time

● Calculate orbit only every n-th grid point
(4th order Runge-Kutta guiding center integrator)
Right: All calculated orbits for full energy component

● Here: 19 orbits x 3 energy components
→ possible within ~12 ms.

● In between: Shift neighboring profiles and interpolate linearly

l2, ρ2 l1, ρ1lb, ρb

S2 S1

l
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Orbit-average: compatible with beam-width model

● Up to now, we have calculated the orbit-average 
along the beam (at b).

● For the beam-width correction, we need to 
extrapolate from the ρ-cell containing b (ρref) along 
the orange line to other radial cells  

● E.g. from ρref to     (ρi):

(similar to the interpolation method)

b

ρi

ρi

rb
beam

θ αβ

ρref

S1

ρref  ρi

poloidal plane R

z
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S K1

Results of „RABBIT orbit average“ in good 
agreement with MC orbit average

● Test accuracy of the RABBIT rt orbit average: 
Compare it to Monte-Carlo orbit average (including fully realistic NBI geometry)

● Very good agreement is found, despite orders of magnitude difference in 
calculation time (~5000 orbits vs. ~60 orbits)

Birth profile (sum over all 
E components):

Average pitch v||/v of full-E 
component:
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Comparison to NUBEAM

Fast-ion density Heating to ionsHeating to ions

● Orbit-average leads to good agreement in profile shape

● Slight deviations remain in plasma center, affecting only small 
fraction of plasma volume

● Orbit-average has also an impact on volume-integrated heating 
distribution to electrons/ions and improves agreement

Heating to electrons
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ Source

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)

5. Applications
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Time dependence

● For time-dependent simulation: Discrete time steps Δt

● Calculate how far the fast-ions slow down during time-step:

→ multiply steady state solution 

with box function 

Δt Δv
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Time dependence via train of fast-ion pulses

Time       step 1                         step 2

Σ

. . .

. . .

. . .

● If beam is still turned on in 
„step 2“, add a new pulse at 
nominal injection energy

●Final state of „step 1“ is 
starting point of „step 2“

●continue …
(add new rows each time-step, 
sum over rows)
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Comparison of time evolution with NUBEAM

   Q2        Q5       Q3       Q6        Q4       Q8        Q7

● Analyze discharge where different NBI 
sources (Q#) are interchanged

● Good agreement of temporal evolution
total

ions

total

ions

Q7

Q6

Q8

Q3 Q4

Q1 Q2 Q5 
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Kinetic equation - outline

Kinetic equation for distribution function f(x, v, t)

+ Source

3. Orbit effects

2. collisions 
(e.g. slowing down, 
pitch angle scattering)

1. Source = NBI 
deposition4. Time dependence 

(=0 for steady state 
solution)

5. Applications
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RABBIT for equilibrium reconstructions with the IDE code

Equilibrium reconstruction: Solve Grad-Shafranov-
Schlüter equation for ψ:

● IDE code: Equilibrium reconstruction based on 
integrated data analysis
[R. Fischer, 2016, FST]

● Fast-ions from NBI can contribute significantly to 
the pressure p(ψ)

● Neutral beam current drive is relevant for current 
diffusion equation

● With RABBIT these profiles can be calculated 
routinely and also directly after the discharge

RABBIT
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● Fast-ion pressure 
→ increases Grad-Shafranov shift 
→ correction for magnetic axis

● Relevant for correct interpretation of 
diagnostics (e.g. MSE)

● In this case: Sawtoothing plasma, 
sawtooth-induced fast-ion redistribution is 
relevant, too

RABBIT for equilibrium reconstructions with the IDE code



Markus Weiland, 27th IAEA FEC 2018 25

c

● Fast-ion pressure 
→ increases Grad-Shafranov shift 
→ correction for magnetic axis

● Relevant for correct interpretation of 
diagnostics (e.g. MSE)

● In this case: Sawtoothing plasma, 
sawtooth-induced fast-ion redistribution is 
relevant, too

→ here modeled by post-processing 
RABBIT profiles

→ Outlook: implement redistribution directly 
in RABBIT.

RABBIT for equilibrium reconstructions with the IDE code
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Detect AE-induced fast-ion transport by analyzing neutron rates

● Alfvén eigenmodes (AE) can be measured directly 
by fluctuation diagnostics

● Do they cause strong fast-ion transport?
→ can be assessed by comparing measured 
neutron rate with neo-classical prediction

● With RABBIT, this information is available directly 
after the discharge or even in real-time

● Used in scenario development for reversed shear 
steady state scenario experiments
→ Goal: Reduce fast-ion transport to optimize 
perfomance
→ RABBIT useful for decision making between 
discharges

(TRANSP)
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Database comparison between TRANSP and RABBIT

● Comparison between RABBIT and 
TRANSP for all shots from the 
experimental session 
→ Good agreement

● Outlook: Use for real-time control of AE 
modes

→ use ECE to detect AE amplitude

→ use RABBIT to detect detrimental 
fast-ion transport 
→ trigger counter-measures, e.g. 
reduce NBI power (=AE drive)

● Use for data-mining (plan to run Rabbit 
on every historic DIII-D discharge)

neutron  rate (high Bt)

neutron  rate (low Bt)
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Real-time implementation of RABBIT on ASDEX Upgrade and TCV

RT equilibrium
JANET/LIUQE

Te, ne raw data 
from:
Interferometry, 
ECE

RT profile 
estimator
RAPTOR

ne(ρ)
Te(ρ)
Ti(ρ)

RABBIT 
(NBI)

Magnetics

Profiles of: 
Heating, current-
drive, particle 
source...

real-time 
diagnostics

real-time codes

TORBEAM 
(ECRH)

● RAPTOR is 1D real-time transport solver → relies on realistic inputs of sources by auxiliary heating
● Status of RABBIT implementation:

Hardware is installed, software is being finalized, first tests/results are expected in few weeks

...
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Summary – RABBIT: A high-fidelity real-time NBI code

Three parts:

● 1. Beam attenuation – birth profile

● 2. Orbit average

● 3. Time dep. solution of FP equation

● In total ~20 ms per time-step (1 thread per beam) - faster than NUBEAM by roughly a factor of ~1000

● Good agreement with NUBEAM e.g. for heating profiles, neutron rates, fast-ion pressure
tested so far on ASDEX Upgrade, DIII-D and JET

Applications / Outlook:

● For improved equilibrium reconstruction (e.g. IDE)

● Neutron rates allow to assess fast-ion transport (e.g. at DIII-D, intershot and real-time)

● Real-time control applications (with RAPTOR) at ASDEX Upgrade and TCV

● In ASTRA for the currently developed ASDEX Upgrade flight simulator

● In integrated modeling frameworks (IMAS, ETS, JINTRAC, OMFIT, …)

Calc. time: Method:

~ 7 ms Simplified geometry (“thin beam”), analytic treatment of beam width

~ 12 ms Conventional GC-integrator, but for very few orbits (~20 per E-comp.)

~ 1 ms Fully analytic
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Backup
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Intel Xeon E5-2680 v3 (2.5GHz) CPUs, 

CPU hardware


