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Motivation

● Operation with JET ITER-like wall (ILW) 
requires management of tungsten impurities

● JET-ILW DT scenarios aim at steady high 
performance (15MW fusion for 5s)
 

● Scenario development must address
3 connected challenges

– Maintain tolerable divertor heat loads

– Control central W accumulation

– Avoid performance limiting MHD

● Predictive modelling can help to guide 
scenario optimisation

Localisation (LFS)                Accumulation

(E. Joffrin, this conf.)

(L. Garzotti, this conf.)
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Outline

● Mechanisms of W accumulation

● Integrated predictive modelling

● Optimisation of heating

● Extrapolation to DT 
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• W transport has 4 components, here focus on
neoclassical convection and turbulent diffusion

Mitigation - large where 
turbulent transport 

Threat: Drives 
accumulation

Complex, but 
benign

Small, ~ PA, 

no Z dependence

Logarithmic 
gradient in 
stationary state 
with no source

Central ICRH heating

Centrifugal effects

Neocl. 
transport 
in PS limit.
(R. Dux) 

Rotation ->  Poloidal asymmetry 
up to 20x increase in neocl. transport (JET) Casson PPCF 2015

Both neoclassical and turbulent transport are relevant for W



   F.J. Casson et al. |  27th FEC conference | Ghandinaghar | 22-27 Oct. 2018 | Page 6

Evolution of bulk density profile controls W accumulation timescale

JET-ILW hybrids (NBI only)

Proxy for neoclassical convection

P
ro

xy
 f

or
 W

 p
ea

ki
ng

Evolution 
in time

r/a = 0.15

● Central W accumulation universal observation 
the Hybrid scenario (q95 ~ 4,   βN = 2 - 3)

– Slow rise in density peaking eventually 
leads to W accumulation

● JET Hybrid scenario more prone than 
Baseline (q95 ~ 3,  βN ~ 1.8)  to W 
accumulation:

– Lower density stationary scenario

– Density more peaked (central beam 
deposition)

– Less sawteeth (central flushing)

– Higher beta → NTMs

– Larger Mach numbers 
(more poloidal asymmetry)

● Here we focus on the Hybrid scenario
Angioni NF 2014
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ICRH can mitigate W accumulation in several ways

● Central ICRH has multiple beneficial effects

– Drives central turbulence 

● Decreases main ion density peaking and rotation

● Increases W diffusion

– Increased temperature peaking and neoclassical screening

– Fast ions act on neoclassical W transport

● Anisotropy of minority reduces 
poloidal asymmetry of W

● Additional temperature screening

–         

● The various effects present a complex optimisation

– Requires integrated flux-driven modelling

– Requires high fidelity ICRH modelling

Baseline, with Ti = Te
E. Lerche Nucl. Fusion 56 (2016) 036022
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Outline

● Mechanisms of W transport

● Integrated predictive modelling

● Optimisation of heating

● Extrapolation to DT 
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Integrate first principle models to predict 9 channels self-consistently

To enable this work, first-principle transport models integrated in JINTRAC suite

NBI sources 
PENCIL 

[Challis C. NF 29 (1989) 563]

NBI sources 
PENCIL 

[Challis C. NF 29 (1989) 563]

Core turb. transport
pedestal top inward 

QuaLiKiz : 
gyrokinetic quasilinear, 

ITG-TEM-ETG
 [Bourdelle C. et al. 2016]  

Core turb. transport
pedestal top inward 

QuaLiKiz : 
gyrokinetic quasilinear, 

ITG-TEM-ETG
 [Bourdelle C. et al. 2016]  Radiation, 

ionisation, 
recombination 

SANCO and ADAS 
[Lauro-Taroni L. 1994 ]

Radiation, 
ionisation, 

recombination 
SANCO and ADAS 

[Lauro-Taroni L. 1994 ]

Neocl. transport 
NEO : poloidal. asymm, 
drift kinetic, full Fokker–

Planck collisions
 [Belli E A and Candy J 2015]

Neocl. transport 
NEO : poloidal. asymm, 
drift kinetic, full Fokker–

Planck collisions
 [Belli E A and Candy J 2015]

Current 
diffusion
Current 
diffusion

Magnetic 
Equilibrium
Magnetic 

Equilibrium

JETTO 1D 
transport eqs. 
[M. Romanelli et al 2014] 

Profiles: 
Ti, Te, j, Vtor

n
D
, n

T
,
 
n

Be
, n

Ni
, nW 

ELM av. pedestal
ad-hoc transport in 

feedback control with cold 
neutral source

ELM av. pedestal
ad-hoc transport in 

feedback control with cold 
neutral source

ICRH sources 
PION (or imposed)

[L. G. Eriksson NF 33 (1993) 1037]

ICRH sources 
PION (or imposed)

[L. G. Eriksson NF 33 (1993) 1037]
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Evolution of highest performance hybrid reproduced over ~10 τE 

           Thermal heating

NBI inj 26MW

ICRH coupled 4.5 MW

Axial Te

        Av Te

Axial density

Av. density 

electron 
density

Ti

Te

rotation

n
e

n
D

Pre-MHD drop

● Highest performance hybrid in JET-ILW   Bt = 2.8T, Ip = 2.2 MA, H98 = 1.3, τE = 0.17s
– Predicted from start of H-mode until W accumulation on axis

● Timescale of density rise correct; temp and rotation (first principles!) also well predicted

● Axial Te maximum after 1s → W radiation

●

●
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Simulation predicts correct timescale of W and Ni accumulation

● W on axis from 7.2s, in both simulation and expt.

– W dominates total radiation, Ni dominates Zeff

● Accumulation process more controlled in experiment

– Simulations extremely sensitive in accum. Phase

– May suggest an missing transport process; no ad-hoc transport used

SXR tomography                    SXR forward model
          (exp)                                         (sim)
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Simulation predicts correct timescale of W and Ni accumulation

● 1,1 MHD arrives after accumulation begins

– Triggered by W?  

– Temp collapse → loss of central bootstrap current

– Limits performance but mitigates accumulation
(not modelled)

Tot pred.
Th. + BT

Thermal

neutrons

radiation

Zeff
Axis

Average

Total
ρ  0.2 - 0.8
ρ < 0.2

 q
0          

                     -dq
0
/dt

 n = 1 MHD



   F.J. Casson et al. |  27th FEC conference | Ghandinaghar | 22-27 Oct. 2018 | Page 13

● SOL not modelled, W sources not computed

– Necessary to control both source and transport

– In flat top, W flushing and pedestal convection are in 
balance if ELM freq. constant (RTC)

– Total W content constant in simulation and experiment

– Complementary modelling for ramp down integrates 
SOL W sputtering, ELM cycle and sawteeth

                               Elena de Luna, this conf

Strengths and limitations of the presented modelling

● Core transport, equilibrium, and sources are 
self-consistent and first-principle based

– Excellent predictive power

– Explores non-linear, multi-channel interactions

● Pedestal sources and transport are 
matched to experiment

– Little predictive power

– ELM cycle not modelled

● Core MHD is not modelled

– Not present in early phase of 
hybrid pulses, but significant later

nW

F Koechl PPCF 60 074008 (2018)
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Outline

● Mechanisms of W transport

● Integrated predictive modelling

● Optimisation of heating

● Extrapolation to DT 
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Increased NBI power will accelerate W accumulation

32 MW NBI (max)
26 MW NBI (ref)

Axial n
D

Axial radiation 

Axial Te 

n
D
 T

i
 

Beam particle 
source

Turb. diffus.
(effective)

● Beam energies will be increased to reach maximum power

– More central power, particle, and torque deposition

– NBI particle source is significant in increasing 
central n∇ D   [T. Tala, this conf., Garzotti, Valovic NF 2006/7]

– For VW, increased n∇ D dominates increased Ti∇

4.5 MW ICRH 
50:50 i:e

125 keV
106 keV 
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ICRH heating delays W accumulation, as observed 

ICRH 0 MW
ICRH 4.5 MW
ICRH 8 MW

Axial radiation 

Axial Te 

32 MW NBI
ICRH 50:50 i:e

n
D
 T

i
 

RF ion heatingTurb. diffus.
(effective)

● ICRH helps in neoclassical dominated core, both increasing T∇ i and decreasing n∇ D  

– Increased turbulent diffusion reduces central density peaking:  localised axial ICRH most effective 

– Predictions consistent with JET observations

– 4MW increase in ICRH compensates 6MW increase in NBI
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n
D
 

Ion heating schemes predicted as most effective on W 

Axial radiation 

Axial Te 

     80% e heating

 50:50

80% ion heating

● Ion heating both increases T∇ i and decreases n∇ D                                   Prediction, not yet tested  

● Specific to JET hybrid scenario:   
Ti > Te, and dominant neoclassical convection (large Mach no ~ 0.7)

– Where Ti ~ Te coupled, or turbulence dominates, 
electron heating more effective (AUG and ITER)

32MW NBI
8 MW ICRH

T
i
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High fidelity ICRH modelling supports He-3 minority scheme 

He-3 minority
H minority

Total heating
 
4.5MW coupled 
on axis

Collisional
Ion heating

He-3 minority
H minority

● Support the integrated modelling with standalone state-of-the-art ICRH modelling (SCENIC)

– Full wave solver, second harmonic absorption 

– Monte Carlo fast ions and Fokker-Planck 

– Self-consistent equilibrium with fast ion anisotropy 

– Finite orbit widths reduce impact of anisotropy on W (negligible in high NBI JET)

● He-3 minority scheme preferentially heats ions

– Narrower power deposition due to narrower orbits, higher power density on axis

– Best for neoclassical W screening

– Similar expected for 3-ion scheme

                                                   (Y.O. Kazakov, this conf.)

● Power density and W control maximised
when resonance within 10cm of axis

x[H] = x[He-3] 
        = 2.5%
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Outline

● Mechanisms of W transport

● Integrated predictive modelling

● Optimisation of heating

● Extrapolation to DT 
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Tritium plasmas have better confinement….

● Extrapolations to TT and DT plasmas find positive isotope scaling of core confinement

– Inclusion of ETG scales pins Te

– i-e collisional energy exchange reduces with mass

– Increased Ti / Te and ITG stabilisation

● Similar scaling to other DT extrapolations

– Specific to high power discharges with Ti > Te

– Relies on ETG scales, need to verify with nonlinear

● Caveat:  Understanding of isotope scaling is incomplete Pin   40MW 
Pfus 15MW

Conservative pedestal assumptions
(no scaling with power or isotope)

(H Weisen, this conf.)

(J Garcia, this conf.)
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…. but earlier W accumulation

● Improved confinement in DT also gives larger density peaking, and earlier W accumulation

– Mitigate with increased density 
(less central NBI particle deposition, less density peaking)

– Some cost in performance

– Requires optimisation / integration of

● Increased triangularity

● Increased plasma current 

● Pedestal isotope scaling

TT
DT
DD
DT + dens

Stored energy

Fusion power

Axial radiation

Axial Te

n
D+T T

i
TT
DT
DD

      DT + dens
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Conclusions

● First-principle models integrated into a powerful multi-channel predictive tool for core plasma

– An exciting era for integrated modelling

● Reproduces observed W accumulation after several confinement times

● Guides scenario development to optimise W control in JET hybrid: 

– He-3 ICRH scheme predicted to be more effective for W control

● Specific to strongly rotating JET plasmas, with Ti > Te, 
where neoclassical convection dominates W transport

– Positive isotope scaling of confinement from ion-electron energy exchange

● This mechanism specific to plasmas with Ti > Te

– Earlier W accumulation predicted in DT plasmas

● Mitigated by increased plasma density, at some cost in performance

W
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High fidelity ICRH modelling supports near axial resonance

14 cm HFS
   Axial
      10 cm LFS
          30 cm LFS

H minority, 4.5 MW
Ion heating 
   x[H] =2.5%

● Fine resonance scan modelled

– Power density maximal when resonance within 10cm of axis

– Insensitive within +/-10cm, due to orbit power spreading

● Anisotropic pressure is relevant only for LFS heating,
but has negligible impact on W asymmetry (in high NBI JET)

– Effect reduced compared to previous works, by finite orbit effects

– Cannot overcome dominant rotation effect, even more negligible in He-3

– Fast ion temperature screening also negligible due to orbit power spreading

Consistent with 
observations ->

E. Lerche Nucl. Fusion 56 (2016) 036022



   F.J. Casson et al. |  27th FEC conference | Ghandinaghar | 22-27 Oct. 2018 | Page 26

4-channel validation in JET-C hybrid (with core Ti measurement)

Ad hoc model to emulate 
electromagnetic stabilisation 
of ITG turbulence (not present 
in QuaLiKiZ)

R/LTi inputs decreased by 
β

thermal
/β

total
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Validation of global evolution
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Electron heating preferred in ITER
better for W turbulent transport (outward convection)

C. Angioni et al 2017 Nucl. Fusion 57 022009

 C. Angioni, Physics of Plasmas 22, 
102501 (2015)
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Poloidal asymmetries with anisotropy

● ICRH heats minorities anisotropically, LFS localisation of minority 

– Poloidal potential can overcome CF to give 
HFS localisation of heavy impurities

●  Anisotropy requires coupled Wave-Fokker-Planck simulation. 

Experimentally validated:
JET: L. C. Ingesson PPCF 2000 ??
CMOD: M. Reinke PPCF 2012 

● Anisotropy increases with 
power density ICRH has no 

influence on VNC 
in off-axis case

H  anisotropy H  temp. → screening

Temperature screening scales as 

TORIC-SSFPQL, R. Bilato
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Influence of H minority at 4.4%  (No FOW effects) 

No ICRH 
= Off-axis 
ICRH 

All central ICRH effects

● Needed v. peaked Ti for this result 
– hollow SXR means very hollow nW 

Mantica EPS 2015; 
Casson PPCF 2015

EXP SIM
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Predictive multi-channel modelling to optimise W control in JET
(TH/3-2)

● 8 channels modelled predictively 
with first-principle models:

– Reproduces evolution including 

radiative collapse after ~10 τE

– Includes poloidal asymmetry 
enhancement of neoclassical
W transport (20x)

– Used to optimise ICRH for W control: 
He-3 predicted more effective than H 
minority 
in JET hybrid conditions

Pin 40MW 
Pfus 15MW
               Conservative pedestal 

● Extrapolations to DT find positive isotope scaling of confinement due to increased 
Ti / Te and ITG stabilisation

– Inclusion of ETG scales pins Te;  ion-electron collisional energy exchange 
decreases with isotope mass

– Improved confinement in DT also gives larger density peaking
and earlier W accumulation

– Mitigate with increased density (less central NBI particle deposition)  

Density
W

Radiation on axis

8MW central
ICRH

     80% e heating

 50:50

80% ion heating

(increased temperature screening)
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