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Optimisation of heating against W
● Increased NBI power will accelerate W accumulation [5]

– Beam energies will be increased to reach maximum power

– More central power, particle (density peaking), and torque deposition

● ICRH helps most in neoclassical dominated core, 
both increasing T∇

i
 and decreasing n∇

D
  

– Increased turbulent diffusion reduces central density peaking
localised axial ICRH most effective 

– Predictions consistent with JET observations [8,9]

– 4MW increase in ICRH compensates 6MW increase in NBI

● Ion heating schemes predicted as most effective on W
– Ion heating both increases

Ti and decreases n∇ ∇
D

– Specific to JET hybrid scenario:
Ti > Te, dominant neoclassical 
convection (large Mach no ~ 0.7)

– Where Ti ~ Te coupled, or turb
dominates, electron heating best [12]
(e.g. ITER)

● Supporting high-fidelity ICRH model (SCENIC [10,11]) shows
– He-3 minority scheme achieves larger power density and larger ion heating

– Resonance within 10cm of axis is optimal; fast ion effects on W transport negligible with FOW

Predictions for DT
● Tritium plasmas have better confinement but earlier W accumulation 

– Inclusion of ETG scales pins Te; i-e collisional energy exchange reduces with mass

– Increased Ti / Te and ITG stabilisation;  specific to plasmas with Ti > Te  [14]

– Improved confinement in DT also gives larger density peaking

● Mitigate with increased density (less central NBI particle deposition)
– Some cost in performance -  requires optimisation / integration

– Access via Increased triangularity / plasma current / pedestal isotope scaling
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Predictive multi-channel flux-driven modelling
to optimise ICRH tungsten control in JET

Need to optimise JET-ILW scenarios against W accumulation

● JET-ILW DT scenarios aim at steady high performance (15MW fusion for 5s) [1]
 

● Scenario development must address 3 connected challenges
– Maintain tolerable divertor heat loads
– Control central W accumulation
– Avoid performance limiting MHD

W accumulation driven by neoclassical convection enhanced by rotation

Integrate first-principle models to predict 9 channels self-consistently 

Validation of modelling against highest performance hybrid discharge

● Accumulation process more controlled in expt.
● Simulations extremely sensitive in accum. phase
● May suggest a missing transport process 
● No ad-hoc transport used

● 1,1 MHD arrives after accumulation begins
● Triggered by W?  →  loss of central bootstrap current
● Limits performance but mitigates accumulation
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W poloidal asymetries due to rotation 
enhance neoclassical transport by an 
order of magnitude [2,3,4,5] but 
anisotropy of heated minority can 
reverse the effect [6,7]

Predict evolution from start of H-mode

Core fully predictive using only first principle models [5]

Timescale of density rise well predicted

Rotation well predicted with symmetry breaking model

Bt = 2.8T, Ip = 2.2 MA 
H
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E
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Black: Experiment
Colors: Predictive simulation

● W on axis from 7.2s,
in both simulation and expt.

● Radiative collapse in core
● W dominates radiation 
● Ni dominates Zeff
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Apply state-of-the-art modelling capabilities 
to guide scenario development
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Anisotropy effects act only for LFS resonances [13]

Summary

● First-principle models integrated 
into a powerful multi-channel 
predictive tool for core plasma

● Reproduces observed W 
accumulation after several 
confinement times

● Guides scenario development to 
optimise W control in JET hybrid
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