Integrated Operation of Steady-state Long Pulse H-mode in EAST

by X. Gong¹

With

A. M. Garofalo², J. Huang¹, J. Qian¹, C.T. Holcomb³, A. Ekedah⁴, R. Maingi⁵, E. Li¹, L. Zeng¹, B. Zhang¹, J. Chen¹, M. Wu¹, H. Du¹, M. Li¹, X. Zhu¹, Y. Sun¹, G. Xu¹, Q. Zan¹, L. Wang¹, L. Zhang¹, H. Liu¹, B. Lyu¹, S. Ding¹, X. Zhang¹, F. Liu¹, Y. Zhao¹, B. Xiao¹, J. Hu¹, C. Hu¹, L. Hu¹, J. Li¹, B. Wan¹ and the EAST team¹

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China
 ²General Atomics, San Diego, California, 92186-5608, USA
 ³Lawrence Livermore National Laboratory, Livermore, California, USA
 ⁴CEA, IRFM, F-13108 Saint Paul-lez-Durance, France
 ⁵Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA

27th IAEA Fusion Energy Conference

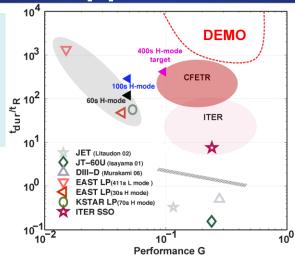
22-27 October 2018, Ahmedabad, India

Acknowledgement

1 南丹麦大学 5 拉彭兰他理工大学 9 欧洲聚变能源机构 13 库尔恰托夫研究所

2 德国马普等离子体所 3 芬兰国际技术研究中心 4 英国卡勒姆聚变研究中心 5 拉彭兰他理工大学6 美国普林斯顿大学7 美国机械工程师协会8 美国通用原子能公司

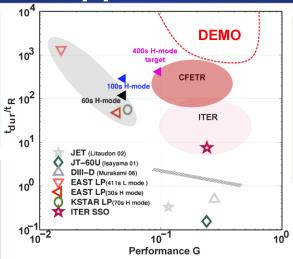
9 欧洲聚变能源机构10 法国原子能委员会11 芬兰国家技术创新局12 叶夫列莫夫电物理装备研究所


13 库尔恰托夫研究所 14 俄罗斯联合核能研究所 15 韩国国家核聚变研究所 16 日本国立核聚变科学研究所

Great Progress on EAST Is Benefit from Broad Domestic and Wide International Collaboration!

Strategies to Establish the Scientific Basis for Long Pulse Operation in Support of ITER and CFETR

S1: Enhance H/CD efficiency and relevant fundamental physics understanding and key diagnostics

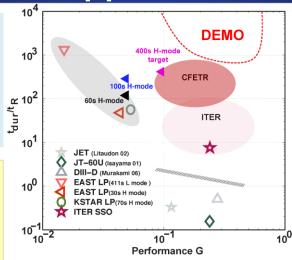

NBI 4+4 MW (Co/Ctr ~80 kV) ECRH 2+2 MW (140GHz) ICRH 6+6 MW (25-75MHz) LHCD 4+6 MW (2.45/4.6GHZ)

Strategies to Establish the Scientific Basis for Long Pulse Operation in Support of ITER and CFETR

S1: Enhance H/CD efficiency and relevant fundamental physics understanding and key diagnostics

 S2: Demonstrate long-pulse
 (≥100s) H-mode plasmas and develop fully non-inductive high-β scenarios

NBI 4+4 MW (Co/Ctr ~80 kV) ECRH 2+2 MW (140GHz) ICRH 6+6 MW (25-75MHz) LHCD 4+6 MW (2.45/4.6GHZ)

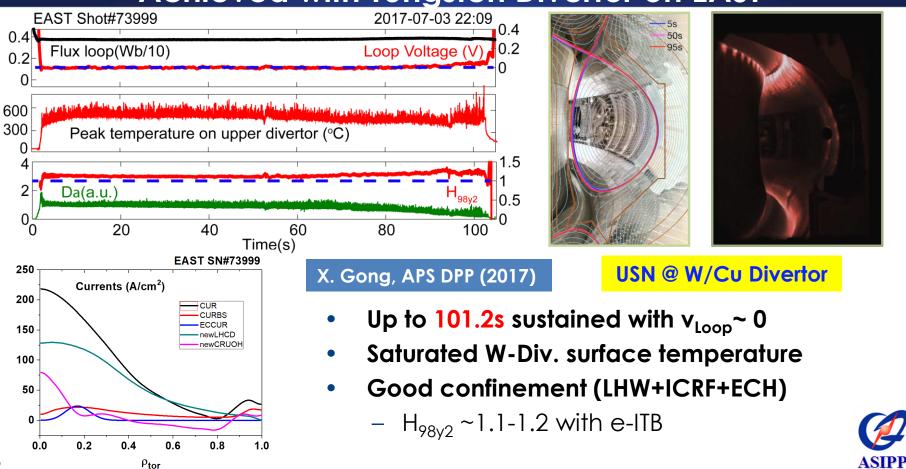


Strategies to Establish the Scientific Basis for Long Pulse Operation in Support of ITER and CFETR

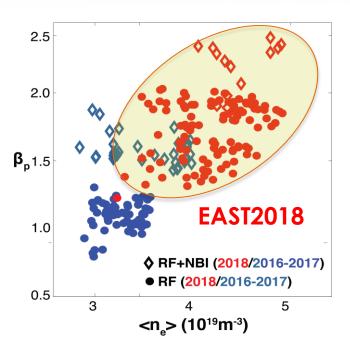
S1: Enhance H/CD efficiency and relevant fundamental physics understanding and key diagnostics

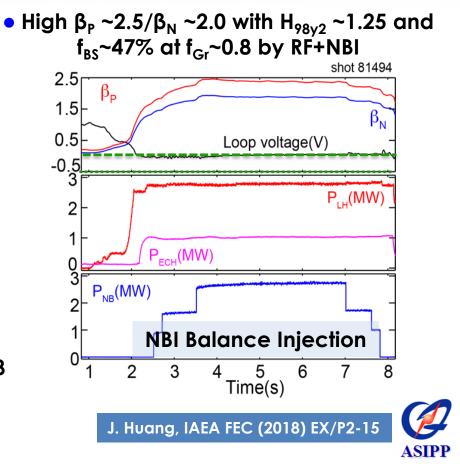
 S2: Demonstrate long-pulse
 (≥100s) H-mode plasmas and develop fully non-inductive high-β scenarios

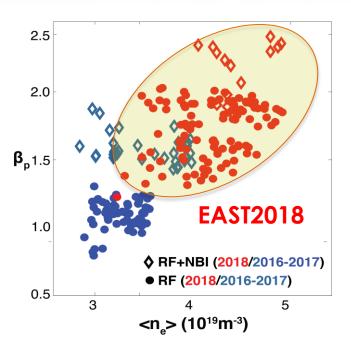
S3: Extend EAST operation regime to demonstrate steady-state high performance plasmas and deliver relevant physics for ITER and CFETR

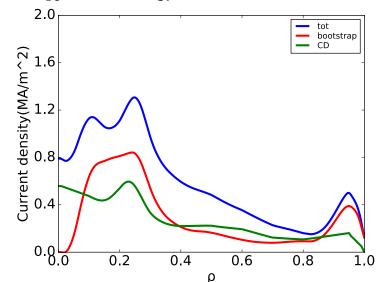


NBI 4+4 MW (Co/Ctr ~80 kV) ECRH 2+2 MW (140GHz) ICRH 6+6 MW (25-75MHz) LHCD 4+6 MW (2.45/4.6GHZ)


B.N. Wan, IAEA FEC (2018) OV/2-2

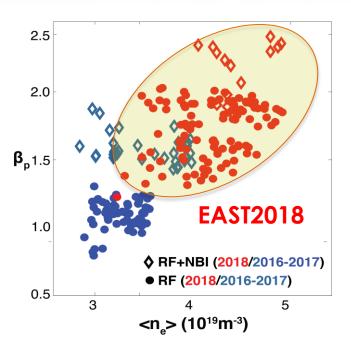

The Longest Pulse Fully Non-inductive H-mode Operation Achieved with Tungsten Divertor on EAST

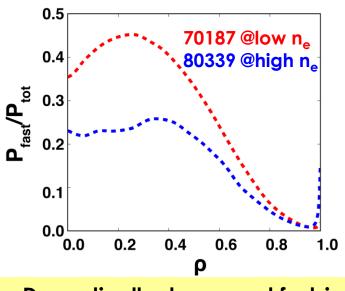

Recent Experiments Demonstrated Steady-state Fully Noninductive Scenarios with Extension of Fusion Performance



Recent Experiments Demonstrated Steady-state Fully Noninductive Scenarios with Extension of Fusion Performance

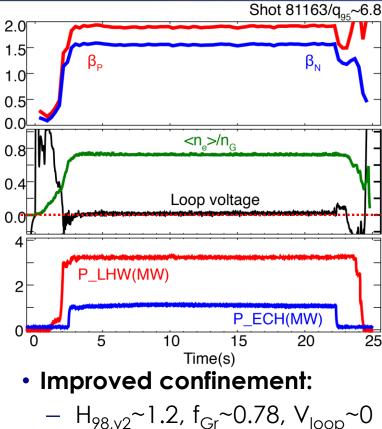
- High f_{BS} ~40-50% with H_{98y2} >1.0 at f_{Gr} ~0.6-0.8
- Broad q-profile, Shafranov shift and e-ITB


• High β_P ~2.5/ β_N ~2.0 with H_{_{98y2}} ~1.25 and f_{_{BS}}~47\% at f__r~0.8 by RF+NBI


Alignment of Bootstrap Current and total current

Recent Experiments Demonstrated Steady-state Fully Noninductive Scenarios with Extension of Fusion Performance

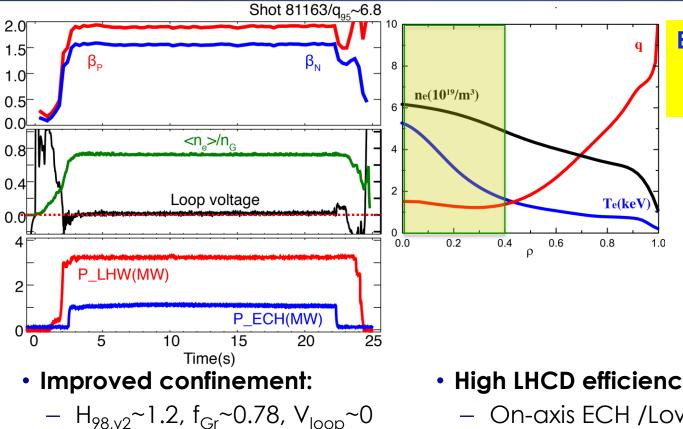
• High β_P ~2.5/ β_N ~2.0 with H_{98y2} ~1.25 and $f_{BS}{\sim}47\%$ at $f_{Gr}{\sim}0.8$ by RF+NBI



Dramatically decreased fast-ion pressure at high-ne /low beam energy

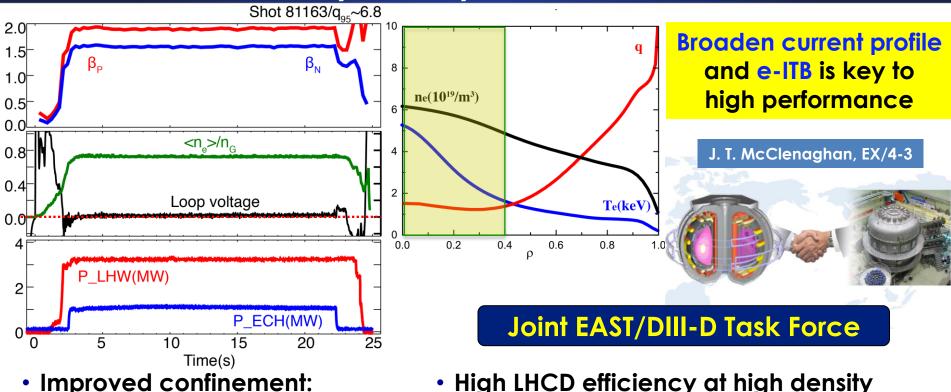
- High f_{BS} ~40-50% with H_{98y2} >1.0 at f_{Gr} ~0.6-0.8 - Broad q-profile, Shafranov shift and e-ITB

ASIPP


Long Pulse Fully Non-inductive $\beta_P \sim 2$, $\beta_N \sim 1.6$, $f_{BS} \sim 50\%$ up to 21s Achieved by RF-only on EAST with Metal Walls

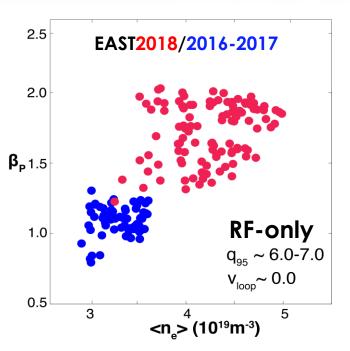
- High LHCD efficiency at high density
 - On-axis ECH /Low recycling wall /Integrated active control

Long Pulse Fully Non-inductive $\beta_P \sim 2$, $\beta_N \sim 1.6$, $f_{BS} \sim 50\%$ up to 21s Achieved by RF-only on EAST with Metal Walls



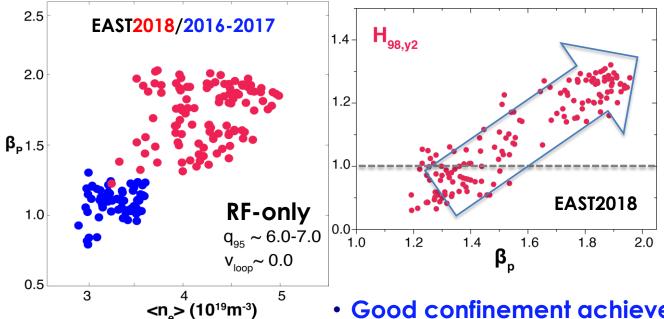
Broaden current profile and e-ITB is key to high performance

- High LHCD efficiency at high density
 - On-axis ECH /Low recycling wall /Integrated active control


Long Pulse Fully Non-inductive $\beta_P \sim 2$, $\beta_N \sim 1.6$, $f_{BS} \sim 50\%$ up to 21s Achieved by RF-only on EAST with Metal Walls

- − H_{98,v2}~1.2, f_{Gr}~0.78, V_{loop}~0
- High LHCD efficiency at high density
 - On-axis ECH /Low recycling wall /Integrated active control

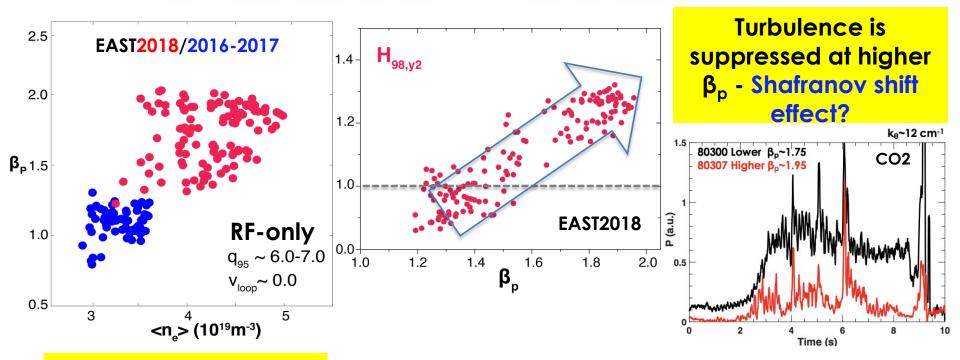
Fully Non-inductive High- β_p Scenarios Extension to High Density Regime Demonstrated on EAST


Zero or low torque experiments on EAST may contribute to ITER

With new guide limiter of LHW and the 2nd ECH

- $\beta_p \sim 2.0 / \beta_N \sim 1.6$ using **RF-only**
- $V_{loop}{\sim}$ 0, $f_{BS}{\sim}40{-}50\%$ with $f_{Gr}{\sim}0.6{-}0.8$

Fully Non-inductive High- β_p Scenarios Extension to High Density Regime Demonstrated on EAST


Zero or low torque experiments on EAST may contribute to ITER

14

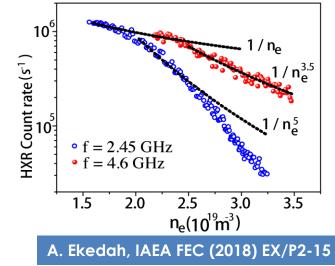
- Good confinement achieved at high β_n
- With new guide limiter of LHW and the 2nd ECH
 - $-\beta_p \sim 2.0/\beta_N \sim 1.6$ using **RF-only** - V_{loop}~ 0, f_{BS}~40-50% with f_{Gr}~0.6-0.8

Fully Non-inductive High-β_p Scenarios Extension to High Density Regime Demonstrated on EAST

Zero or low torque experiments on EAST may contribute to ITER

>More effective heating is required to raise β_N

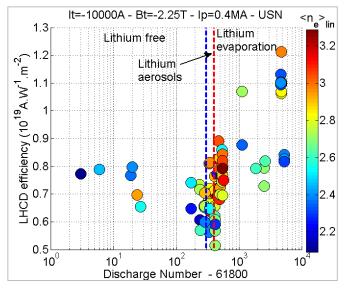
Active kinetics control for stabilities

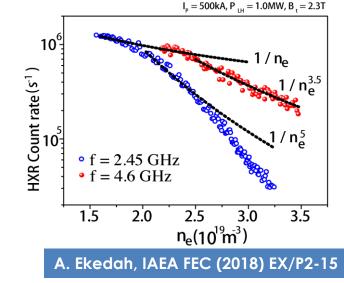


Higher LHW Frequency and Lower Recycling Wall Allows High LHCD Efficiency at High Density

• 4.6GHz LHCD

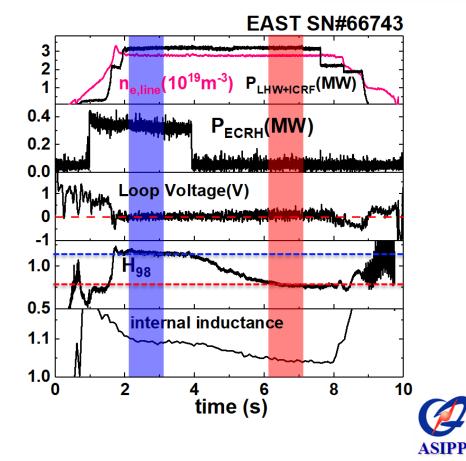
 $I_p = 500$ kA, P $_{LH} = 1.0$ MW, B $_t = 2.3$ T


- Weaker non-linear effect lead
 - Higher current drive efficiency
 - Better confinement
 - Higher rotation driving

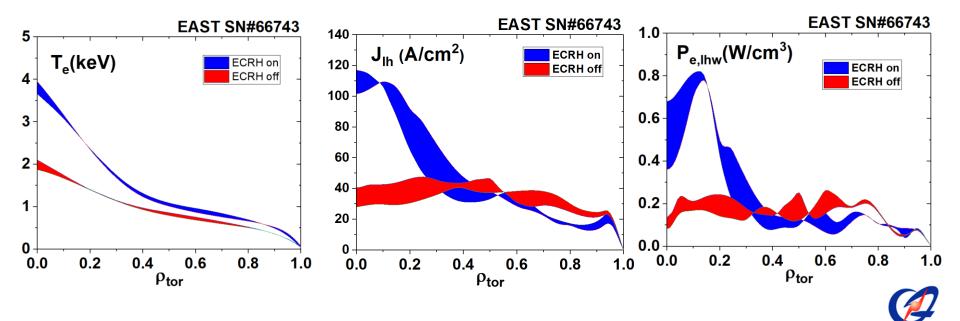


Higher LHW Frequency and Lower Recycling Wall Allows High LHCD Efficiency at High Density

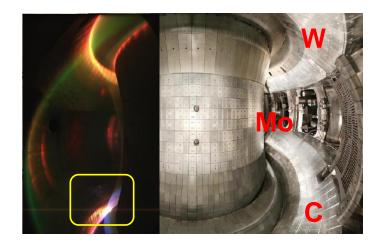
- 4.6GHz LHCD
 - Weaker non-linear effect lead
 - Higher current drive efficiency
 - Better confinement
 - Higher rotation driving


- Higher CD efficiency due to lower Z_{eff} : n_{LH} ~ 1/(5+Z_{Eff})
- Reduced edge neutral density improves accessibility (weaken nonlinear effect)

Synergy of ECH and LHCD also Helps Improvement Confinement and Enabling Higher Performance


- RF discharges
- P_{LHW} ~2.0MW, P_{ICRF} ~1.0MW P_{ECH} ~0.4MW @ on-axis
- Confinement decreased from H_{98y2}~1.15 to 0.75 when ECH turned off

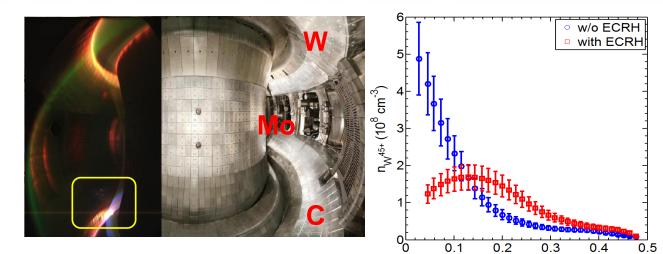
H.F. Du et al., Nucl. Fusion 58, 066011 (2018)


Synergy of ECH and LHCD also Helps Improvement Confinement and Enabling Higher Performance

• More efficient electron heating and current driving by LHW at core with on-axis ECRH (GENRAY+CQL3D)

ASIPP

Demonstration of Effective Particle and Heat Load Exhaust Low Impurity Concentration/Recycling Control

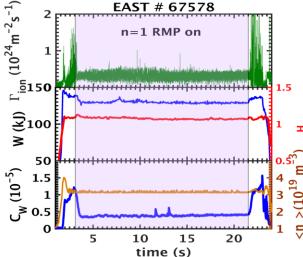


- Actively water-cooled W/Cu Divertor ~10MW/m²
- Inner Cryopump @ Divertors ~75,000I/s for D₂ (@ LHe)
- Real-time Wall conditioning

L. Wang, IAEA FEC (2018) EX/P2-8

Demonstration of Effective Particle and Heat Load Exhaust Low Impurity Concentration/Recycling Control

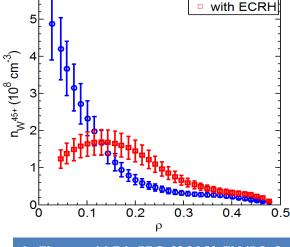
- Actively water-cooled W/Cu Divertor ~10MW/m²
- Inner Cryopump @ Divertors ~75,000I/s for D₂ (@ LHe)
- Real-time Wall conditioning


L. Wang, IAEA FEC (2018) EX/P2-8

L. Zhang, IAEA FEC (2018) EX/P2-3

 On-axis ECH pump out high Z impurities from core plasma

Demonstration of Effective Particle and Heat Load Exhaust Low Impurity Concentration/Recycling Control



- ELM control by n=1 and rotating n=2 and static n=3 RMP in low rotating plasmas
- W-impurities pump-out and heat flux reduced

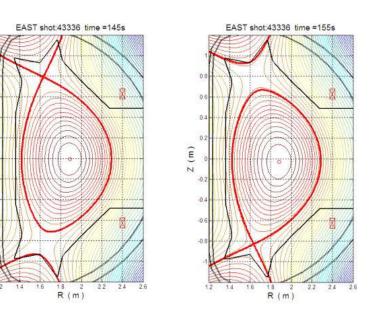
Y. Sun, IAEA FEC (2018) EX/7-2

- Actively water-cooled W/Cu
 Divertor ~10MW/m²
- **Inner Cryopump @ Divertors** ~75,000I/s for D₂ (@ LHe)
- Real-time Wall conditioning

L. Wang, IAEA FEC (2018) EX/P2-8

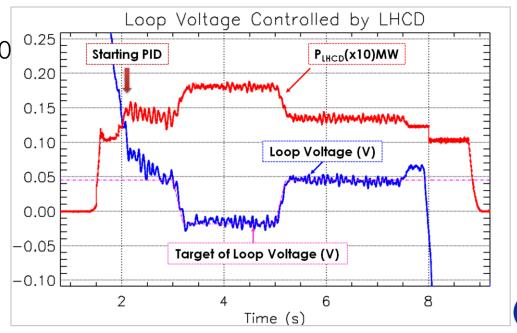
L. Zhang, IAEA FEC (2018) EX/P2-3

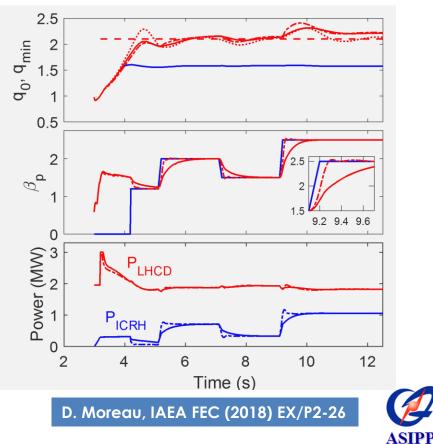
 On-axis ECH pump out high Z impurities from core plasma



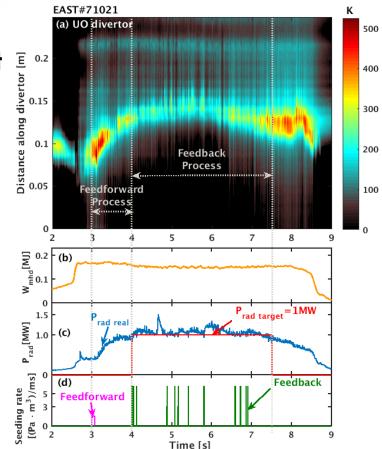
o w/o ECRH

Z (m)


- Plasma Configuration for RF-coupling
 - Outer/inner gap and X-point, Gas-puffing at RF antenna
- Divertor Heat flux and Particle Exhaust
 - Sweep of X point
 - Strike point for pumping



- Plasma Configuration for RF-coupling
- Divertor Heat flux and Particle Exhaust
- Loop Voltage Feedback Control by LHW
 - True steady-state , $I_{OH} \sim 0$
 - PF-coils Consumption


ASIPP

- Plasma Configuration for RF-coupling
- Divertor Heat flux and Particle Exhaust
- Loop Voltage Feedback Control by LHW
- Active Feedback Control
 - Beta and j(r) for stationary SSO

- Plasma Configuration for RF-coupling
- Divertor Heat flux and Particle Exhaust
- Loop Voltage Feedback Control by LHW
- Active Feedback Control
 - Beta and j(r) for stationary SSO
- Active Feedback Control of Radiation Power
 - To reduce heat flux into SOL

K. Wu et al., Nucl. Fusion 58, 056019 (2018)

Summary

- A world record discharge of 101.2 s H-mode achieved on EAST
- Steady-state fully non-inductive scenarios demonstrated with extension of fusion performance
 - High $f_{BS} \sim 40-50\%$ with improved energy confinement ($H_{98,y2} > 1$)
 - Energy confinement improves with increasing BetaP (Broad q-profile, Shafranov shift, e-ITB)
 - Zero/low NBI torque, high performance experiments on EAST offer unique contributions toward ITER and DEMO
- Further research on integration of core performance and edge-divertor plasma for scenarios development and resolving heat flux issues is essential to extrapolate to steady-state reactor

Thank You For Your Attention Your Suggestions and Comments Will Be Appreciated

