# Integrated Operation of Steady-state Long Pulse H-mode in EAST

by X. Gong<sup>1</sup>

#### With

A. M. Garofalo<sup>2</sup>, J. Huang<sup>1</sup>, J. Qian<sup>1</sup>, C.T. Holcomb<sup>3</sup>, A. Ekedah<sup>4</sup>, R. Maingi<sup>5</sup>, E. Li<sup>1</sup>, L. Zeng<sup>1</sup>, B. Zhang<sup>1</sup>, J. Chen<sup>1</sup>, M. Wu<sup>1</sup>, H. Du<sup>1</sup>, M. Li<sup>1</sup>, X. Zhu<sup>1</sup>, Y. Sun<sup>1</sup>, G. Xu<sup>1</sup>, Q. Zan<sup>1</sup>, L. Wang<sup>1</sup>, L. Zhang<sup>1</sup>, H. Liu<sup>1</sup>, B. Lyu<sup>1</sup>, S. Ding<sup>1</sup>, X. Zhang<sup>1</sup>, F. Liu<sup>1</sup>, Y. Zhao<sup>1</sup>, B. Xiao<sup>1</sup>, J. Hu<sup>1</sup>, C. Hu<sup>1</sup>, L. Hu<sup>1</sup>, J. Li<sup>1</sup>, B. Wan<sup>1</sup> and the EAST team<sup>1</sup>

<sup>1</sup>Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

<sup>2</sup>General Atomics, San Diego, California, 92186-5608, USA

<sup>3</sup>Lawrence Livermore National Laboratory, Livermore, California, USA

<sup>4</sup>CEA, IRFM, F-13108 Saint Paul-lez-Durance, France

<sup>5</sup>Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA

27th IAEA Fusion Energy Conference

22-27 October 2018, Ahmedabad, India

## Acknowledgement



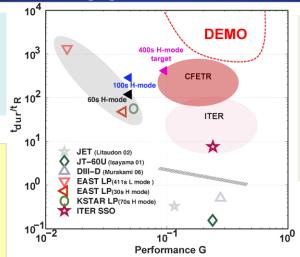
Great Progress on EAST Is Benefit from Broad Domestic and Wide International Collaboration!



### Strategies to Establish the Scientific Basis for Long Pulse Operation in Support of ITER and CFETR

\$1: Enhance H/CD efficiency and relevant to fundamental physics and key diagnostics




NBI 4+4 MW (Co/Ctr ~80 kV) ECRH 2+2 MW (140GHz) ICRH 6+6 MW (25-75MHz)



### Strategies to Establish the Scientific Basis for Long Pulse Operation in Support of ITER and CFETR

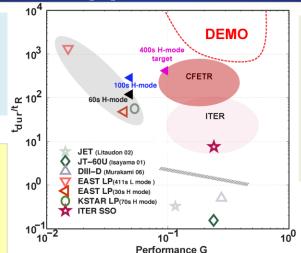
\$1: Enhance H/CD efficiency and relevant to fundamental physics and key diagnostics

\$2: Demonstrate long-pulse
 (≥100s) H-mode plasmas and develop fully non-inductive high-β scenarios



NBI 4+4 MW (Co/Ctr ~80 kV) ECRH 2+2 MW (140GHz) ICRH 6+6 MW (25-75MHz)

LHCD 4+6 MW (2.45/4.6GHZ)




### Strategies to Establish the Scientific Basis for Long Pulse Operation in Support of ITER and CFETR

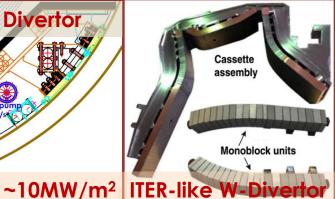
\$1: Enhance H/CD efficiency and relevant to fundamental physics and key diagnostics

\$2: Demonstrate long-pulse
 (≥100s) H-mode plasmas and develop fully non-inductive high-β scenarios

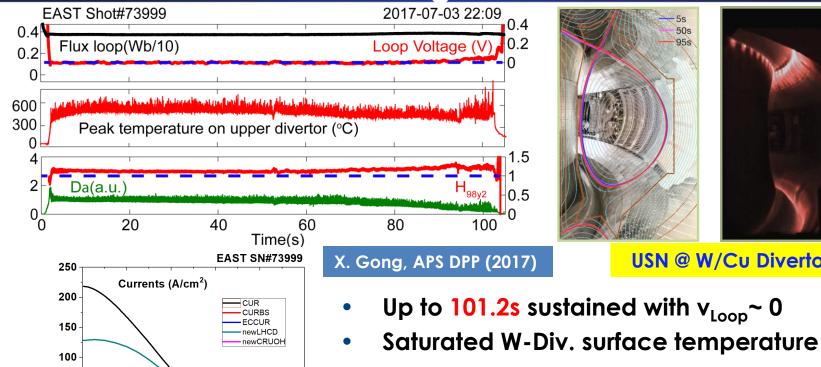
S3: Extend EAST operation regime to demonstrate steady-state high performance plasmas and deliver relevant physics for ITER and CFETR

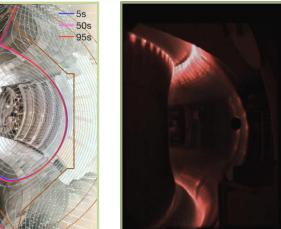


NBI 4+4 MW (Co/Ctr ~80 kV)


**ECRH 2+2 MW (140GHz)** 

ICRH 6+6 MW (25-75MHz)


LHCD 4+6 MW (2.45/4.6GHZ)


B.N. Wan, IAEA FEC (2018) OV/2-2





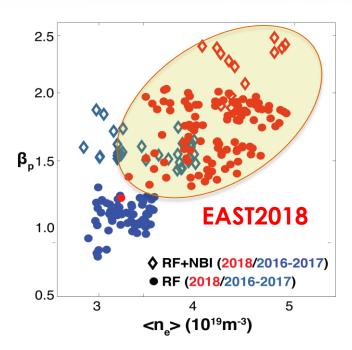
### The Longest Pulse Fully Non-inductive H-mode Operation **Achieved with Tungsten Divertor on EAST**





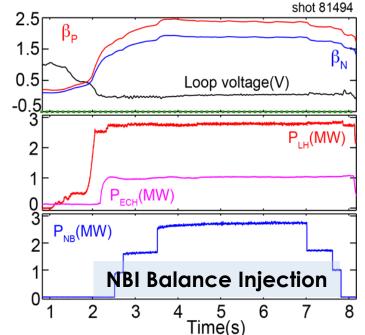
**USN @ W/Cu Divertor** 

- Good confinement (LHW+ICRF+ECH)
  - $H_{98v2} \sim 1.1-1.2$
  - Low bootstrap current fraction: f<sub>RS</sub>~23%




50

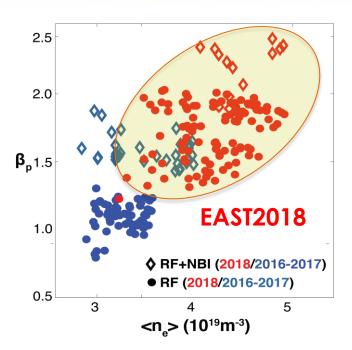
0.6


Ptor

### Recent Experiments Demonstrated Steady-state Fully Noninductive Scenarios with Extension of Operational Regime

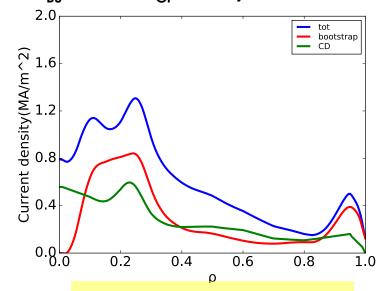


- High  $f_{BS}$ ~40-50% with  $H_{98y2}$ >1.0 at  $f_{Gr}$ ~0.6-0.8
- Broad q-profile, Shafranov shift and e-ITB


• High  $\beta_P$  ~2.5/ $\beta_N$  ~2.0 with H<sub>98y2</sub> ~1.25 and f<sub>BS</sub>~47% at f<sub>Gr</sub>~0.8 by RF+NBI



J. Huang, IAEA FEC (2018) EX/P2-15



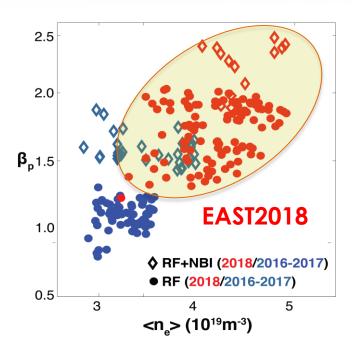

### Recent Experiments Demonstrated Steady-state Fully Noninductive Scenarios with Extension of Operational Regime



- High  $f_{BS}$ ~40-50% with  $H_{98v2}$ >1.0 at  $f_{Gr}$ ~0.6-0.8
- Broad q-profile, Shafranov shift and e-ITB

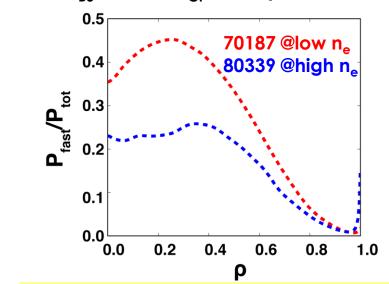
• High  $\beta_P$  ~2.5/ $\beta_N$  ~2.0 with H<sub>98y2</sub> ~1.25 and f<sub>BS</sub>~47% at f<sub>Gr</sub>~0.8 by RF+NBI




Alignment of Bootstrap

Current and total current

J. Huang, IAEA FEC (2018) EX/P2-15

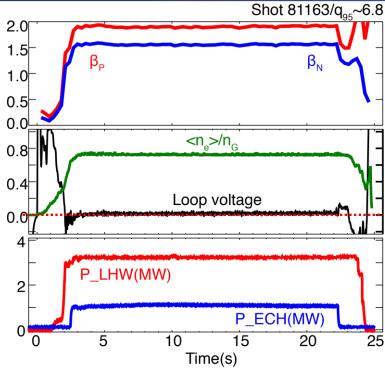



### Recent Experiments Demonstrated Steady-state Fully Noninductive Scenarios with Extension of Operational Regime



- High  $f_{BS}$ ~40-50% with  $H_{98\sqrt{2}}$ >1.0 at  $f_{Gr}$ ~0.6-0.8
- Broad q-profile, Shafranov shift and e-ITB

• High  $\beta_P$  ~2.5/ $\beta_N$  ~2.0 with H<sub>98y2</sub> ~1.25 and f<sub>BS</sub>~47% at f<sub>Gr</sub>~0.8 by RF+NBI




Dramatically decreased for Fast-ion pressure at high-ne /low beam energy

J. Huang, IAEA FEC (2018) EX/P2-15



# Long Pulse Fully Non-inductive High-β<sub>p</sub> up to 21s Achieved by RF-only on EAST with Metal Walls



### Good confinement H<sub>98,y2</sub>~1.2

$$- \beta_{p} \sim 1.95/\beta_{N} \sim 1.6, \ f_{Gr} \sim 0.78, \\ f_{BS} \sim 45\%, \ V_{loop} \sim 0$$

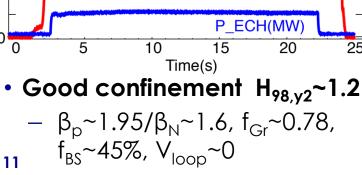


# Long Pulse Fully Non-inductive High-β<sub>p</sub> up to 21s Achieved by RF-only on EAST with Metal Walls

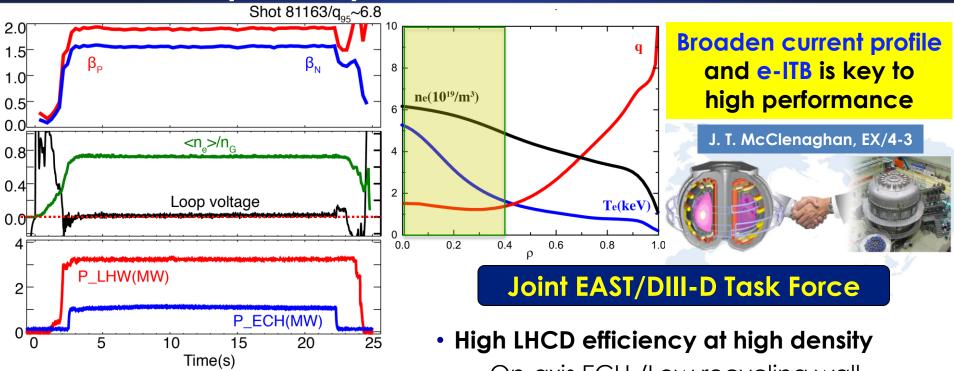
0.4

0.6




Broaden current profile and e-ITB is key to high performance

ASIPP

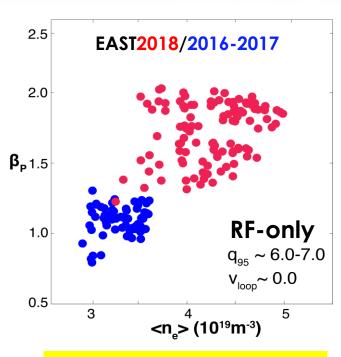

- High LHCD efficiency at high density
  - On-axis ECH /Low recycling wall /Integrated active control
- Small/no ELM is essential for SSO

Te(keV)

8.0



## Long Pulse Fully Non-inductive High-β<sub>p</sub> up to 21s Achieved by RF-only on EAST with Metal Walls



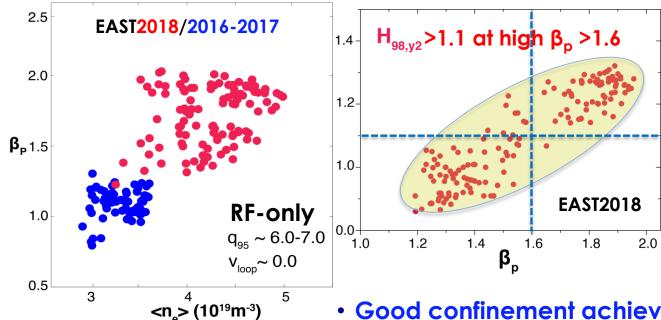

- Good confinement H<sub>98,v2</sub>~1.2
- $-\beta_{p}\sim1.95/\beta_{N}\sim1.6$ ,  $f_{Gr}\sim0.78$ ,  $f_{RS} \sim 45\%$ ,  $V_{loop} \sim 0$

- On-axis ECH /Low recycling wall
- /Integrated active control
- Small/no ELM is essential for SSO



## Fully Non-inductive High- $\beta_p$ Scenarios Extends to High Density Regime Demonstrated on EAST




Zero or low torque experiments on EAST may contribute to ITER

13

- With new guide limiter of LHW and the 2<sup>nd</sup> ECH
  - $\beta_p$ ~2.0/ $\beta_N$ ~1.6 using **RF-only**
  - $-V_{loop} \sim 0$ ,  $f_{BS} \sim 40-50\%$  with  $f_{Gr} \sim 0.6-0.8$



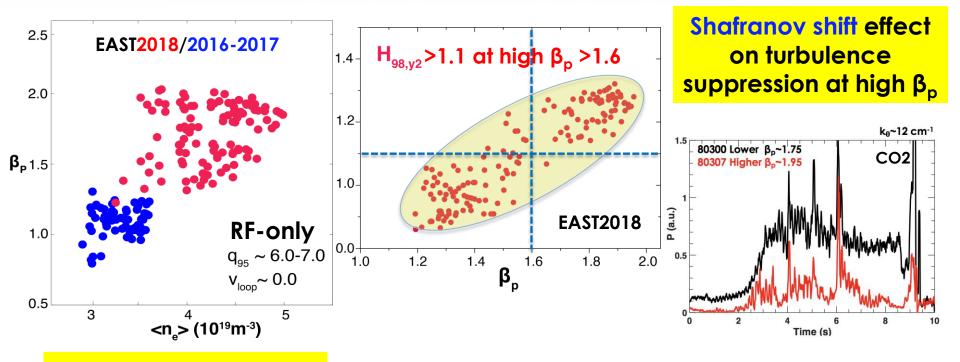
### Fully Non-inductive High- $\beta_p$ Scenarios Extends to High **Density Regime Demonstrated on EAST**



- Good confinement achieved at high β<sub>n</sub>
- With new guide limiter of LHW and the 2<sup>nd</sup> ECH

ASIPP

- $-\beta_p \sim 2.0/\beta_N \sim 1.6$  using **RF-only**
- $V_{loop}$ ~ 0,  $f_{BS}$ ~40-50% with  $f_{Gr}$ ~0.6-0.8



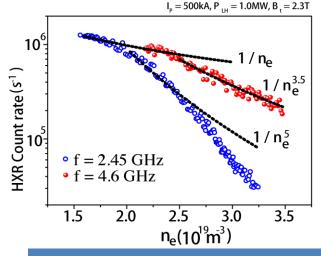

Zero or low torque

experiments on EAST

may contribute to ITER

## Fully Non-inductive High- $\beta_p$ Scenarios Extends to High Density Regime Demonstrated on EAST




- Zero or low torque experiments on EAST may contribute to ITER
- More effective heating is required to raise β<sub>N</sub>
- Active kinetics control for stabilities

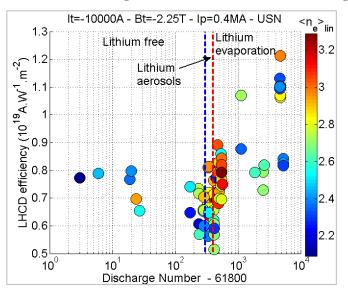


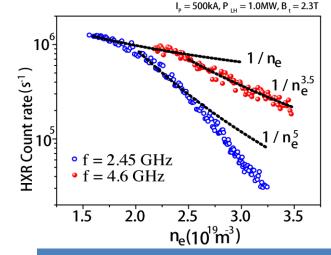
## Higher LHW Frequency and Lower Recycling Wall Allows High LHCD Efficiency at High Density

#### 4.6GHz LHCD

- Weaker non-linear effect lead
  - Higher current drive efficiency
  - Better confinement
  - Higher rotation driving




A. Ekedah, IAEA FEC (2018) EX/P2-15




## Higher LHW Frequency and Lower Recycling Wall Allows High LHCD Efficiency at High Density

#### 4.6GHz LHCD

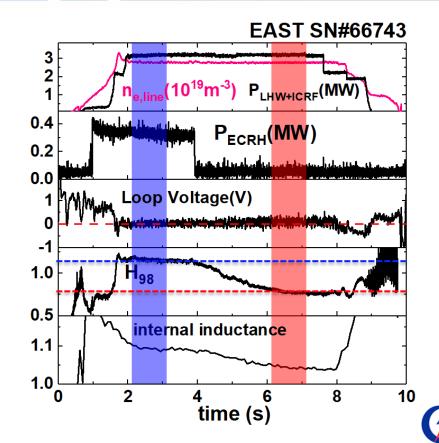
- Weaker non-linear effect lead
  - Higher current drive efficiency
  - Better confinement
  - Higher rotation driving





A. Ekedah, IAEA FEC (2018) EX/P2-15

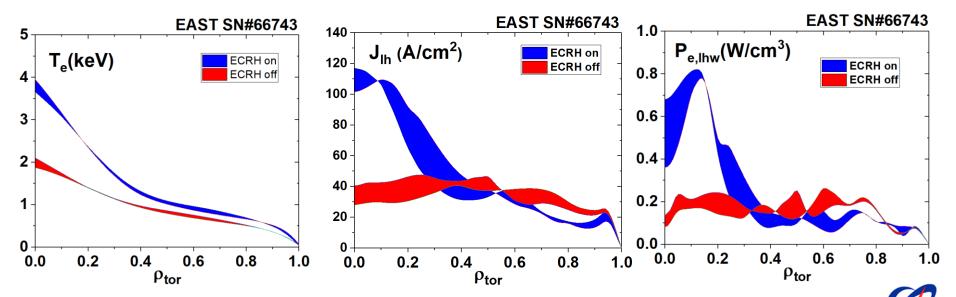
- Higher CD efficiency due to lower  $Z_{eff}$ :  $n_{LH} \sim 1/(5+Z_{Eff})$ 
  - Reduced edge neutral density improves accessibility (weaken nonlinear effect)




## Synergy of ECH and LHCD also Helps Improvement Confinement and Enabling Higher Performance

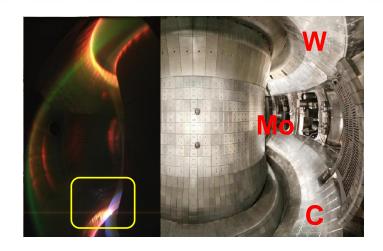
#### RF discharges

- P<sub>LHW</sub>~2.0MW, P<sub>ICRF</sub>~1.0MW
   P<sub>FCH</sub> ~0.4MW @ on-axis
- Confinement decreased from H<sub>98y2</sub> ~1.15 to 0.75 when ECH turned off


H.F. Du et al., Nucl. Fusion 58, 066011 (2018)



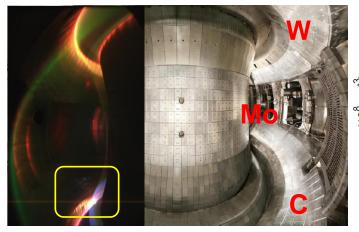
## Synergy of ECH and LHCD also Helps Improvement Confinement and Enabling Higher Performance


#### Shift of LHW H&CD, GENRAY+CQL3D shows

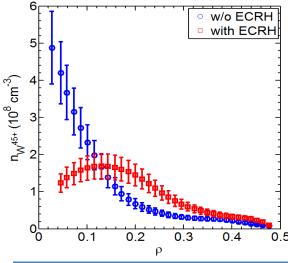
 More efficient electron heating and current driving by LHW at core with on-axis ECRH



ASIPP


## Demonstration of Effective Particle and Heat Load Exhaust Low Impurity Concentration/Recycling Control




- Actively water-cooled W/Cu
   Divertor ~10MW/m²
- Inner Cryopump @ Divertors
   ~75,000l/s for D<sub>2</sub> (@ LHe)
- Real-time Wall conditioning

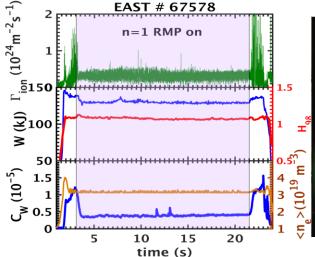


## Demonstration of Effective Particle and Heat Load Exhaust Low Impurity Concentration/Recycling Control



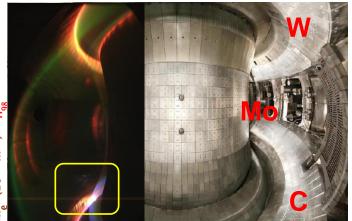
- Actively water-cooled W/Cu
   Divertor ~10MW/m²
- Inner Cryopump @ Divertors
   ~75,000l/s for D<sub>2</sub> (@ LHe)
- Real-time Wall conditioning




L. Zhang, IAEA FEC (2018) EX/P2-3

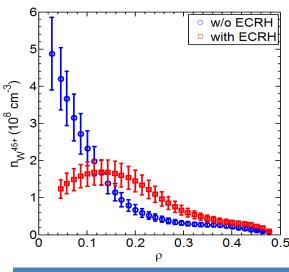
 On-axis ECH pump out high Z impurities from core plasma




L. Wang, IAEA FEC (2018) EX/P2-8

## Demonstration of Effective Particle and Heat Load Exhaust Low Impurity Concentration/Recycling Control




- ELM control by n=1 and rotating n=2 and static n=3 RMP in low rotating plasmas
- W-impurities pump-out and heat flux reduced

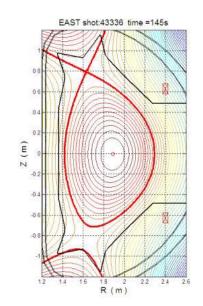
Y. Sun, IAEA FEC (2018) EX/7-2

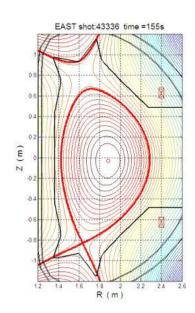


- Actively water-cooled W/Cu
   Divertor ~10MW/m²
- Inner Cryopump @ Divertors ~75,000l/s for D<sub>2</sub> (@ LHe)
- Real-time Wall conditioning

L. Wang, IAEA FEC (2018) EX/P2-8




L. Zhang, IAEA FEC (2018) EX/P2-3


 On-axis ECH pump out high Z impurities from core plasma



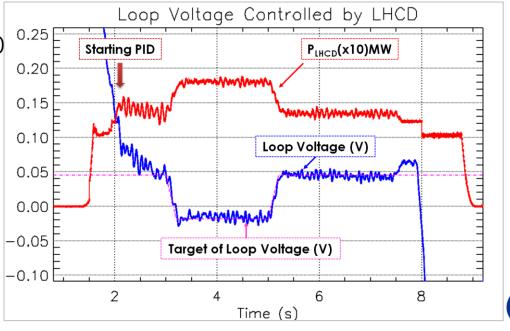
- Plasma Configuration for RF-coupling
  - Outer/inner gap and X-point, Gas-puffing at RF antenna
- Divertor Heat flux and Particle Exhaust
  - Sweep of X point
  - Strike point for pumping

N.Viaello, IAEA FEC (2018) EX/3-2



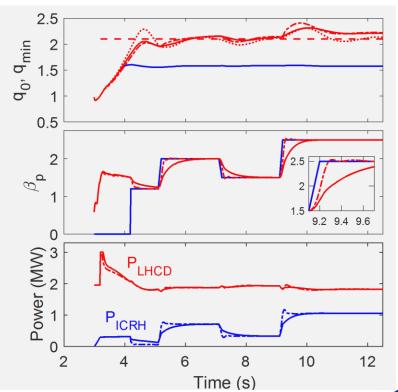





- Plasma Configuration for RF-coupling
- Divertor Heat flux and Particle Exhaust

Loop Voltage Feedback Control by

**LHW** 

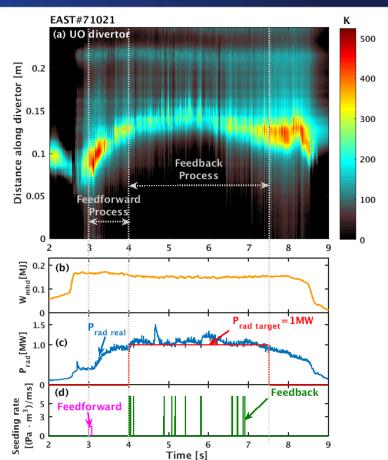

True steady-state , I<sub>OH</sub>~ 0

PF-coils Consumption





- Plasma Configuration for RF-coupling
- Divertor Heat flux and Particle Exhaust
- Loop Voltage Feedback Control by LHW
- Active Feedback Control
  - Beta and j(r) for stationary SSO
- Active Feedback Control of Radiation Power
  - To reduce heat flux into SOL




D. Moreau, IAEA FEC (2018) EX/P2-26



- Plasma Configuration for RF-coupling
- Divertor Heat flux and Particle Exhaust
- Loop Voltage Feedback Control by LHW
- Active Feedback Control
  - Beta and j(r) for stationary SSO
- Active Feedback Control of Radiation Power
  - To reduce heat flux into SOL

K. Wu et al., Nucl. Fusion 58, 056019 (2018)





## Summary

- A world record discharge of 101.2 s H-mode achieved on EAST
- Steady-state fully non-inductive high- $\beta_P$  scenarios demonstrated with extension of operational regime
  - High LHCD efficiency at high density with on-axis ECH
  - High f<sub>RS</sub>~40-50% with good confinement
  - Broad q-profile, Shafranov shift and e-ITB is key to high performance
  - Zero or low torque experiments on EAST may contribute to ITER
- Further research on integration of core performance and edge-divertor plasma for scenarios development and resolving heat flux issues will try to extrapolate to reactor regime, essential for advanced steady-state operation

