Gyrokinetic simulations and analysis of pedestals

- The modes causing transport in experimental pedestals are identified by the ratios of effective diffusivities in different channels (e.g. D_e/χ_e, χ_i /χ_e, D_{impurity}/χ_e)
- Diverse experimental observations of transport in the various channels form a mutually reinforcing pattern: the dominant energy losses are from Micro-Tearing Modes and/or Electron Temperature Gradient (ETG) modes, but not MHD-like modes (Kinetic Ballooning Modes)
 - Observations in many different channels considered: T_i, n_e and n_{impurity}
 - Density pump-out from RMPs, surprising, fits into and reinforces the picture
 - KBM possibly important to density transport, might enforce marginal stability via that channel
- Many magnetic fluctuation observations can be identified as being MTM (not MHD-like)
- Extensive simulations of two DIII-D pedestals strongly reinforces the picture
- Comparisons of simulated ExB shear suppression of turbulent transport in pedestals to analytic theory of Zhang and Mahajan finds excellent agreement
 - The making of first principles based criterion for whether modes are suppressed or not
 - Conventional pedestals at burning plasmas ρ^* : velocity shear may not suppress ITG/TEM
- Regimes of greatly reduced ITG/TEM instability uncovered in a Simplified Kinetic Model (SKIM), and verified by simulations
 - An specific combination of geometric effects and profiles leads to the regime
 - Low pedestal transport with low shear appears possible
 - Optimized core transport regimes also indicated

1