Electron acceleration in dense plasmas heated by picosecond relativistic laser N. Iwata¹, Y. Sentoku¹, T. Sano¹ and K. Mima^{1, 2} - ¹ Institute of Laser Engineering, Osaka Univ., Japan - ² GS for the Creation of New Photon Industries, Japan - We studied energetic electron generation in picosecond relativistic laser-plasma interactions. - Becoming available using recent kJ-class high power lasers. - The interaction enters into the *mesoscale* between kinetic and fluid regimes. We found that 1) Electron acceleration is enhanced after the plasma changes structure of the laserirradiated surface in the ion time scale (\sim ps). 2) Power law energy distribution of electrons is formed during the multi-ps recirculation. Superthermal electron generation by ps lasers discussed here can be a basis for laboratory applications and also can provide a key to understand astrophysical phenomena such as cosmic ray acceleration.