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Rotation Is Important for Determining Stability and Performance in

Tokamaks, Affects Predictions of ITER Performance
40

* Rotation is important for determining ExB shear,
MHD stability, tfransport of high-Z particles

— All key for determining fusion power output 32
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 Also key for ITER is affect of pedestal rotation on '§ 24

S

access to ELM free H-mode via QH-mode! and =<

N

RMP ELM suppression2 3
— Scaling arguments offer favorable prospect of RMP 16
ELM suppression
ITER modeling has shown a doubling of fusion 3
power when taking rotation into account due
to ExB shear suppression of turbulence 0.0
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Determining Rotation in ITER Is Difficult Due to the Presence of

Many Similar Size Momentum Sources

* Momentum source in many current tokamaks dominated by NBI

* ITER’s larger moment of inertia means non-NBI sources need to be well understood
because NBI torque will not be dominant

o0
)

* Intrinsic rotation profiles display features

caused by many physical effects that ’\g
may be present in ITER = 60
>9'
5 40
s
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o[ H-mode Intrinsic Rotation Examples
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Determining Rotation in ITER Is Difficult Due to the Presence of

Many Similar Size Momentum Sources

* Momentum source in many current tokamaks dominated by NBI

* ITER’s larger moment of inertia means non-NBI sources need to be well understood
because NBI torque will not be dominant

Co-current LCFS feature:
-Orbit loss 80 DIII-D
-Co/counter current —

transport E 60
-Residual stress _°
-Nevtral particles E 10 4
-Fast-ion loss 3
-Field ripple/NTV §
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o[ H-mode Intrinsic Rotation Examples
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Determining Rotation in ITER Is Difficult Due to the Presence of

Many Similar Size Momentum Sources

* Momentum source in many current ftokamaks dominated by NBI

* ITER’s larger moment of inertia means non-NBI sources need to be well understood
because NBI torque will not be dominant

Co-current LCFS feature:
-Orbit loss 80 DIlI-D
-Co/counter current | Core gradient: | —.

transport -Residual stress | € 0
-Residual stress -Beam torque | -
-Neutral particles -MHD/NTV 2
-Fast-ion loss &
-Field ripple /NTV §

20
* Evaluating 3D field torques requires
rotation profile, subject of future work o[ H-mode Intrinsic Rotation Examples
after “initial condition” is laid down 0.0 0. 0.4 06 08 10
. DiI-p i oo a1 )



Outline

* DIII-D investigation of LCFS co-current feature in intrinsic
rotation plasmas
—Fast-ion effects on p scaling
—Neuftral particle effects on infrinsic momentum fransport

* ITER prediction based on co-current feature and core NBI

* Implications for RMP ELM suppression and conclusion

_—
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p. Scaling of Intrinsic Co-current Rotation Feature Is Key for

Predicting ITER Rotation Boundary Condition

* Low p, operating regime of ITER cannot be achieved in current tokamaks

* Robust co-current rotation near LCFS is a boundary condition, investigated by:
empirical scaling!2, dimensionless parameters scans?3, reduced physics models4.5

58 50 25 0 25 50
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2 "g", = Coun’r-—mode Low Torgue: Infrinsic, QH, High Co-lp Torque
T~ IBS, etc.
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- Similar predictions: 4-10 krad/s, but discrepancy exists between
[1] Rice, Nucl. Fusion 47,

databases (M~p!') and dimensionless parameter scan (M~p-1) 1618 (2007)
— Datfabases vary p. more widely, dimensionless parameter scan 2] deGrassie, Phys. Plasmas 23,
082501 (2016)

}/CII’ es p alone BUT had significant fast-ion populafion 131 Chrvstal Phys. Plasmas 24

* Dimensionless parameter scan (intrinsic torque) results 042501 (2017)
need to be verified in intrinsic rotation conditions [4] Rice, Nucl. Fusion 57, 1(12 %o]o;)t
D”’-D C. Chrystal/IAEA FEC/October 25, 2018 [5] AShourVOh' Phys PlCISfT\OS 25'

ot Fusion 056114 (2018)



Measured Scaling of Intrinsic Rotation in ECH H-modes Has

Smaller Discrepancy and Increases Confidence in ITER Prediction

* No significant scaling of infrinsic Mach number measured with in dimensionless
parameter scan, defying both possible expectations
— Fundamentally ditferent from observing variation with Mach number in a database

- Expectation was M~p-120.9 new result not
quite within error bar,*perhaps edge

plasma factors or Zet changes are the )

cause of variation in results T
— Other dimensionless parameters matched ‘;’ 0.10

.CEI

- Adjust previous intrinsic torque based =

ITER prediction of ~10 krad/s: result is S

=

3 krad/s, very near the previous
predictions (4-10 krad/s)
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Measured Scaling of Intrinsic Rotation in ECH H-modes Has

Smaller Discrepancy and Increases Confidence in ITER Prediction

* No significant scaling of infrinsic Mach number measured with in dimensionless
parameter scan, defying both possible expectations
— Fundamentally ditferent from observing variation with Mach number in a database

N

* Expectation was . . . . g
quite within error b{ Intrinsic rotation predictions are

plasma factors or Z consistent enough for ITER
cause of variation prediction

—Otherdmensionlest < Are there boundary effects

influencing attempts to measure
* Adjust previous int the p_scaling?
ITER prediction of ~ro-xrerars: .
3 krad/s, very near the previous
predictions (4-10 krad/s)
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Momentum Transport from Nevutrals in Pedestal Is a Hidden

Variable that May Affect Current Tokamaks Much More than ITER

* Nevutiral particles in pedestal are a hidden variable for most current experiments
because they are rarely measured, may be corrupting ITER predictions

* Experiment in DIlII-D made proxy investigation: change neutrals particles O
significantly through SOL conditions, observe intrinsic rotation g a
: 1.5 | | I 3 E
~ 10p-==—-------- - - 10 £
Nnuet Nneut ~ ).5F - r=
Mot ~ | ) $:
ped ~ J ( Me aVnneut) > 0.0 I
> —0.5 + %
* Basic idea: neutrals affect rotation via |:’:' _1'9 O 5
charge exchange and ionization, o 13 I i-“‘i‘}’”j{d.l g D
effectis much reduced in ITER due to = —2.0H T X-point 1E %
decreased neviral penetration into R =291 - - ~prtoque| ASDEX-U - @
_30 | | | -
plasma 090 092 094 096 =

Fpol

D!'!:mq C. Chrystal/IAEA FEC/October 25, 2018 OmOTCIﬂi, Nucl. Fusion 57, 066048 (20] 7)
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Proxy Investigation Uses Divertor Closure to Change Nevutral

Trapping, Effect Shown by SOLPS Modeling

1.5closed ' Dpen Mirrdred Open .

* DIII-D vpper divertor can be
made significantly more 1.0f
closed than lower divertor |

* Create similar intfrinsic rotation
discharges (ECH H-modes) in
these two configurations

— Measure main-ion rotation from E oo0f
core to LCFS with main-ion CER ~ ]

051
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Proxy Investigation Uses Divertor Closure to Change Nevutral
Trapping, Effect Shown by SOLPS Modeling

DIlI-D upper diverior can be
made significantly more
closed than lower divertor

Create similar intrinsic rotation
discharges (ECH H-modes) in
these two configurations

— Measure main-ion rotation from

core to LCFS with main-ion CER
SOLPS modeling shows
nevtrals in open configuration
more easily reach and
peneirate LCFS, increasing
neutral density...

Dili-D
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Proxy Investigation Uses Divertor Closure to Change Nevutral

Trapping, Effect Shown by SOLPS Modeling

* DIII-D vpper divertor can be
made significantly more
closed than lower divertor

Create similar intrinsic rotation
discharges (ECH H-modes) in
these two configurations

— Measure main-ion rotation from
core to LCFS with main-ion CER
SOLPS modeling shows
nevtrals in open configuration
more easily reach and
peneirate LCFS, increasing
neviral density... and particle
source in pedestal region
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Across Database of Open/Closed Plasmas, Pedestal Top Rotation

Constant While Midplane Neutral Emission Changes

* Pedestal top intrinsic rotation (carbon) gives basic indication of changes in edge/
pedestal rotation

* For the parameters varied in these discharges, main trend is expected to be with T,

Closed] 15} Closed o -
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* Nevutirals appear to have little effect because rotation data sets essentially the
same while midplane nevutral emission clearly increase for open cases

D"’ D C. Chrystal/IAEA FEC/October 25, 2018
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DIlI-D Intrinsic Rotation in Open/Closed Divertors Do Not Change

Significantly with Changes in Pedestal Fueling

* Divertor closure affects amount of
nevutral fueling near LCFS as seen
by SOLPS modeling and density
profile results, even when other
parameters are the same

— Density profiles changes are 05
significant given the same Iy, S, etc.

1.9[closed ' Dpen Mirrdred Open -

1.0f

E oof
* Main-ion infrinsic rotation is largely |
vnaffected compared to normal

experimental variation

0510
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* Edge neuvutrals have no significant
effect on intrinsic rotation




DIlI-D Intrinsic Rotation in Open/Closed Divertors Do Not Change

Significantly with Changes in Pedestal Fueling

* Divertor closure affects amount of R
neutral fueling near LCFS as seen | '°S Open  Mirrored Open
by SOLPS modeling.and densi .\.—L

profile results, ever] - |nfrinsic rotation predictions are
parameters are thq  consistent enough for ITER

— [?en.s!’ry profl.les chc predicfion
significant given the o . .
* No significant contamination of
. Main-ion intrinsic rd  INfrinsic rotation experiment from
unaffected compa nevuiral pC"'ﬁCIGS
experimental variaq + With increased confidence in

. Edae neutrals Fave boundary cfondlhop ff)r ITER, we o X f’ﬂ(fﬁ,ﬁ%
9 wais have  proceed with prediction
effect on infrinsic rdreme : Gas Puft : - 174111-3.080 s
450 ., askbamt - of | 174201-3.080 s
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Initial ITER Modeling Done Without Rotation Is Baseline for

Evaluating Effect of Rotation

* Predictive TRANSP determines sources

—|TER baseline scenario (15 MA), EPED pedestal

— 35 Nem and 33 MW NBI, 10 MW |CRF,
6 MW ECCD (at g=3/2, 2 surfaces)

Rotation Set

Uniformlyto 0

16|
* Core solution with TGYRO with TGLF+NEO

transport o
0.0
* Next, use edge rotation boundary -
condition and also solve transport in 20}
momentum channel with NBI > 151

— TGLF momentum transport worked well in ?fj
DIII-D! at lower collisionality and @ — 10}
5/
0
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Core Rotation Shear in ITER Is Predicted to Significantly Improve

Fusion Performance

* Rotation boundary condition of 4 krad/s is
used, relatively modest value within 320

3-10 krad/s range of predictions -%
* Core rotation determined from TGLF 224
momentum flux and 35 Nem source 3 16l
* Deuterium Mach numbers are modest: o
Mcore"’O.z, Mped~0.04 _ :\ITV?tECIDQtSPa(’zIr:)n
— Significant for heavy impurity tfransport %-g 2(5)
* Qs approximately doubles due to density
peaking and increased temperatures O 20t
caused by rotation shear T 15} 151
— Grains of salt: Q values are idiosyncratic to E
the impurities and radiated power, there are 10} 10p
nonlinearifies and initial condition is imporfant, | 5
residual stress not included in core (see

Grierson EX/P6-3 this afternoon} o._ . . . o . . .
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Performance Improvement From Rotation Shear Is Due to

Reduction of Low-k Turbulence and Increase in Density Peaking
* In simulation with rotation, low-k

turbulence => outward particle flux, 0.06
intermediate-k => inward particle flux 0.00XVExp
O-25XVE X B
0-04 O-SOXVE)( B
. Wi 0.75XVE x g
Without ExB shear, total flux would \ 100XV - E

be outward, force TGYRO to flatten
density profile

o0
L 0.02
—
-

- ExB shear suppresses low-k 0.00 R NG

turbulence more strongly, so flux
is balanced even with a peaked —0.02 -

o o O
density profile

109 10"

* Increased Te due to reduced transport further destabilizes intermediate-k
turbulence, increasing inward particle flux, as seen in similar studies!

o ,,DN’!’N-D C. Chrystal/IAEA FEC/October 25, 2018 [1] Grierson, Phys. Plasmas 25, 022509 (2018)
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Performance Improvement From Rotation Shear Is Due to

Reduction of Low-k Turbulence and Increase in Density Peaking
* In simulation with rotation, low-k

turbulence => outward particle flux, 0.06
intermediate-k => inward particle flux Total Flux: +0.045 g-ggz&w
" ExXB
0.04 0.50XVE g
® i 0-75)(VE X B
Without ExB shear, total flux would \ 100XV - C

be outward, force TGYRO to flatten
density profile

(a8
|<° 0.02
L Total Flux: -0.0001

* ExB shear suppresses low-k 0.00
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o o O
density profile

109 10"

* Increased Te due to reduced transport further destabilizes intermediate-k
turbulence, increasing inward particle flux, as seen in similar studies!
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Simple Scaling Relation Offers Favorable Prospect of Achieving

RMP ELM Suppression in ITER

* Low rotation RMP ELM suppression is hard

© 60
to achieve, hypothesized to be a result E
of inward movement of E,=0 =< 40
~w . also hypothesized2, movement is S
typically correlated with E=0 movement = 207 1 |
- Relation for E;=0, divergence free flow: E ) gﬁ
V = k()B + w()Ré = — = — wRB, &
— W — W
v nZe 7 % 20| — ELMing
) @) — Suppressed
* ITER needs less rotation because of: -ch -48 . . . . ) |
— Larger gradient scale length (larger size) o 3.0 3'5’[ (s) i = 5'0#93”063 (a_u_1)
— Larger poloidal field

* 5-9 krad/s of pedestal top rotation is lower limit for suppression in DIII-D, franslates
to 0.2-0.5 krad/s for ITER, <3 krad/s prediction

— Effect of RMP field on rotation prediction still needed to fully answer this question

D"’—D [1] Paz-Soldan, Nucl. Fusion (in review)

C. Chrystal/IAEA FEC/October 25, 2018
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Conclusions

- Edge rotation prediction for ITER is made with *°
increased confidence: 3-10 krad/s 320

wn

— Fast-ion effect on results is relatively small while -§
reducing discrepancies between predictions g 24

N

— Neutral particle induced transport found to be 3 1¢|
small

St —No Rotation

—With Rotation

* ITER, though large and with relatively small 0.0 0
NBI torque, will still have significant enough 2] =~ = = 25
ExB to decrease turbulent fransport 20f
— Prospect of RMP ELM suppression is good ’E: 15l

- These rotation predictions must now be — 10
infegrated with effects from intrinsic and 5|

applied 3D fields

O I I I ! O ! ! ! !
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BACKUP SLIDES

Din-D
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Intrinsic Rotation Does Not Vary with Gross Change in Neutrals

Associated with Divertor Detachment

* Detached divertors have higher
neutral particle pressures - /

NBI Blips

40 / =
- These conditions were created  § -
. e ege . < 20
with significant main-chamber -
gas fueling in order to increase = 0E . :
plasma density a3 g— E
- These changes are expectedto & ,E E
increase nevutral densities inside e (2)— - +«—— Detachment Onset =
the confined plasma, but this = £ 1 1 1 1
! 045— )IG —=
causes no significant change to = o3f T+ SO— 4 i
the intrinsic rotation = 025 :
—So long as T does not begin to drop i : |
* This result supports conclusions ; ﬁ\e
@ 4 ¥
drawn from open/closed divertor g 3 " * M ¥ X
. x 2
comparisons = . . . o
1.5 2.0 2.5 3.0 3.5

[ .
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Dimensionless Parameter Scan Executed in ECH H-modes in DIII-D

Achieved Desired Variation in p,

0.012
0.010 L

* p.was decreased by ~30%, the
expected range achievable in
DIlI-D with limitations on field -
variation due to ECH absorption 0.006} -

0.008 |

0.004]

* Change in Ze is likely due to a 0.002
change in carbon source due to 9=
a hard to control change in 251
boundary conditions ok |
—This is a potential confounding factor 155_

for the results, though previous work .
has not seen causal changes in 1.0
intrinsic rotation with Ze 05F
0.0f

0.0

[
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Simple Scaling Relation Offers Favorable Prospect of Achieving

RMP ELM Suppression in ITER

* RMP ELM Suppression at low rotation is thought to be difficult due to the movement
of the E=0 crossing to lower minor radius

* Using the divergence-free form of velocity:

V = k(4)B + w(y) Ry
a relation for E.=0 can be made into scaling requirement for Mach number
VP VP R+/T/m/B/a
nZze nze R+\/T/m/B/a
Me = —p.q(A7" + X, 1)
— 1S the toroidal rotation frequency it poloidal rotation is zero, B approximated as toroidal
fleld to make factor of g
— We will assume the normalized gradient scale lengths will NOT change in ITER
- 5-9 krad/s of pedestal top rotation is current lower limit for RMP ELM suppression in

DIlI-D, yields a lower limit of 0.2-0.5 krad/s for ITER, <3 krad/s prediction

— Effect of RMP ELM suppression on rotation prediction still needed to fully answer this
question

[
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