Predicting the Rotation Profile in ITER

by C. Chrystal¹ in collaboration with

B. A. Grierson², S. R. Haskey², A. C. Sontag³, M. W. Shafer³, F. M. Poli², and J. S. deGrassie¹

¹General Atomics ²Princeton Plasma Physics Laboratory ³Oak Ridge National Laboratory

Presented at the 27th IAEA Fusion Energy Conference Ghandinagar, Gujarat, India

October 22-27, 2018

Rotation Is Important for Determining Stability and Performance in Tokamaks, Affects Predictions of ITER Performance

- Rotation is important for determining ExB shear, MHD stability, transport of high-Z particles - All key for determining fusion power output
- Also key for ITER is affect of pedestal rotation on access to ELM free H-mode via QH-mode¹ and **RMP ELM suppression²**
 - Scaling arguments offer favorable prospect of RMP ELM suppression

ITER modeling has shown a doubling of fusion power when taking rotation into account due to ExB shear suppression of turbulence

- Momentum source in many current tokamaks dominated by NBI
- ITER's larger moment of inertia means non-NBI sources need to be well understood because NBI torque will not be dominant

 Intrinsic rotation profiles display features caused by many physical effects that may be present in ITER

3

- Momentum source in many current tokamaks dominated by NBI
- ITER's larger moment of inertia means non-NBI sources need to be well understood because NBI torque will not be dominant

Co-current LCFS feature:

- -Orbit loss
- -Co/counter current transport
- -Residual stress
- -Neutral particles
- -Fast-ion loss
- -Field ripple/NTV

- Momentum source in many current tokamaks dominated by NBI
- ITER's larger moment of inertia means non-NBI sources need to be well understood because NBI torque will not be dominant

Co-current LCFS feature:

- -Orbit loss
- -Co/counter current transport
- -Residual stress
- -Neutral particles
- -Fast-ion loss -Field ripple/NTV

Core gradient: -Residual stress

- -Beam torque
- -MHD/NTV

- Momentum source in many current tokamaks dominated by NBI
- ITER's larger moment of inertia means non-NBI sources need to be well understood because NBI torque will not be dominant

Co-current LCFS feature:

- -Orbit loss
- -Co/counter current transport
- -Residual stress
- -Neutral particles
- -Fast-ion loss -Field ripple/NTV

Core gradient: -Residual stress -Beam torque

-MHD/NTV

Evaluating 3D field torgues requires rotation profile, subject of future work after "initial condition" is laid down

6

Outline

DIII-D investigation of LCFS co-current feature in intrinsic rotation plasmas -Fast-ion effects on ρ_* scaling -Neutral particle effects on intrinsic momentum transport

ITER prediction based on co-current feature and core NBI

Implications for RMP ELM suppression and conclusion

ρ_* Scaling of Intrinsic Co-current Rotation Feature Is Key for Predicting ITER Rotation Boundary Condition

- Low ho_* operating regime of ITER cannot be achieved in current tokamaks • Robust co-current rotation near LCFS is a boundary condition, investigated by:
- <u>empirical scaling^{1,2}, dimensionless parameters scans³, reduced physics models^{4,5}</u>

 Similar predictions: 4-10 krad/s, but discrepancy exists between databases (M~ ρ_{1}^{1}) and dimensionless parameter scan (M~ ρ_{2}^{-1})

– Databases vary ρ_{*} more widely, dimensionless parameter scan varies $\rho_{\rm a}$ alone BUT had significant fast-ion population

Dimensionless parameter scan (intrinsic torque) results need to be verified in intrinsic rotation conditions

- [1] Rice, Nucl. Fusion **47**, [2] deGrassie, Phys. Plasmas 23, 082501 (2016) [3] Chrystal, Phys. Plasmas 24, 042501 (2017) [4] Rice, Nucl. Fusion 57, 116004 [5] Ashourvan, Phys. Plasmas 25,
 - 056114 (2018)

1618 (2007) (2017)

Measured Scaling of Intrinsic Rotation in ECH H-modes Has **Smaller Discrepancy and Increases Confidence in ITER Prediction**

- No significant scaling of intrinsic Mach number measured with in dimensionless parameter scan, defying both possible expectations - Fundamentally different from observing variation with Mach number in a database
- Expectation was $M \sim \rho^{-1\pm 0.9}$, new result not quite within error bar, perhaps edge plasma factors or Z_{eff} changes are the cause of variation in results

- Other dimensionless parameters matched

 Adjust previous intrinsic torque based ITER prediction of ~10 krad/s: result is 3 krad/s, very near the previous predictions (4-10 krad/s)

Measured Scaling of Intrinsic Rotation in ECH H-modes Has **Smaller Discrepancy and Increases Confidence in ITER Prediction**

- No significant scaling of intrinsic Mach number measured with in dimensionless parameter scan, defying both possible expectations - Fundamentally different from observing variation with Mach number in a database
- Expectation was $M \sim \rho^{-1\pm 0.9}$, new result not quite within error bar, perhaps edge plasma factors or Z_{eff} changes are the cause of variation in results

- Other dimensionless parameters matched

 Adjust previous intrinsic torque based ITER prediction of ~10 krad/s: result is 3 krad/s, very near the previous predictions (4-10 krad/s)

Measured Scaling of Intrinsic Rotation in ECH H-modes Has **Smaller Discrepancy and Increases Confidence in ITER Prediction**

- No significant scaling of intrinsic Mach number measured with in dimensionless parameter scan, defying both possible expectations - Fundamentally different from observing variation with Mach number in a database
- Expectation was M quite within error b plasma factors or Z cause of variation - Other dimensionles
- consistent enough for ITER prediction
- Are there boundary effects Adjust previous intr the ρ_* scaling?
 - ITER prediction of ~to krau/s. resonts 3 krad/s, very near the previous predictions (4-10 krad/s)

Momentum Transport from Neutrals in Pedestal Is a Hidden Variable that May Affect Current Tokamaks Much More than ITER

- Neutral particles in pedestal are a hidden variable for most current experiments because they are rarely measured, may be corrupting ITER predictions
- Experiment in DIII-D made proxy investigation: change neutrals particles significantly through SOL conditions, observe intrinsic rotation

$$M_{\rm ped} \sim f\left(\frac{n_{\rm nuet}}{n_e}, \frac{n_{\rm neut}}{a\nabla n_{\rm neut}}\right)$$

Basic idea: neutrals affect rotation via charge exchange and ionization, effect is much reduced in ITER due to decreased neutral penetration into plasma

Proxy Investigation Uses Divertor Closure to Change Neutral Trapping, Effect Shown by SOLPS Modeling

- DIII-D upper divertor can be made significantly more closed than lower divertor
- Create similar intrinsic rotation discharges (ECH H-modes) in these two configurations
 - Measure main-ion rotation from core to LCFS with main-ion CER

Proxy Investigation Uses Divertor Closure to Change Neutral Trapping, Effect Shown by SOLPS Modeling

- DIII-D upper divertor can be made significantly more closed than lower divertor
- Create similar intrinsic rotation discharges (ECH H-modes) in these two configurations
 - Measure main-ion rotation from core to LCFS with main-ion CER
- SOLPS modeling shows neutrals in open configuration more easily reach and penetrate LCFS, increasing neutral density...

Proxy Investigation Uses Divertor Closure to Change Neutral Trapping, Effect Shown by SOLPS Modeling

0.0

0.0

Ξ0.0 N

0.0

0.0

- DIII-D upper divertor can be made significantly more closed than lower divertor
- Create similar intrinsic rotation discharges (ECH H-modes) in these two configurations
 - Measure main-ion rotation from core to LCFS with main-ion CER
- SOLPS modeling shows neutrals in open configuration more easily reach and penetrate LCFS, increasing neutral density... and particle source in pedestal region

15

Across Database of Open/Closed Plasmas, Pedestal Top Rotation **Constant While Midplane Neutral Emission Changes**

- pedestal rotation

same while midplane neutral emission clearly increase for open cases

16

Pedestal top intrinsic rotation (carbon) gives basic indication of changes in edge/

• For the parameters varied in these discharges, main trend is expected to be with T_i

Neutrals appear to have little effect because rotation data sets essentially the

DIII-D Intrinsic Rotation in Open/Closed Divertors Do Not Change Significantly with Changes in Pedestal Fueling

- Divertor closure affects amount of neutral fueling near LCFS as seen by SOLPS modeling and density profile results, even when other parameters are the same
 - Density profiles changes are significant given the same I_p , β , etc.
- Main-ion intrinsic rotation is largely unaffected compared to normal experimental variation
- -1.0 Edge neutrals have no significant effect on intrinsic rotation

(u)

DIII-D Intrinsic Rotation in Open/Closed Divertors Do Not Change Significantly with Changes in Pedestal Fueling

- Divertor closure affects amount of neutral fueling near LCFS as seen by SOLPS modeling and density
 - profile results, ever parameters are the
 - Density profiles cha significant given the
- Main-ion intrinsic relation unaffected compa experimental varia
- consistent enough for ITER prediction
- neutral particles
- proceed with prediction
- Edge neutrals have effect on intrinsic romand

Initial ITER Modeling Done Without Rotation Is Baseline for **Evaluating Effect of Rotation**

- Predictive TRANSP determines sources
 - ITER baseline scenario (15 MA), EPED pedestal
 - -35 N•m and 33 MW NBI, 10 MW ICRF,
 - 6 MW ECCD (at q=3/2, 2 surfaces)
- Core solution with TGYRO with TGLF+NEO transport
- Next, use edge rotation boundary condition and also solve transport in momentum channel with NBI
 - TGLF momentum transport worked well in DIII-D¹ at lower collisionality and q

Core Rotation Shear in ITER Is Predicted to Significantly Improve **Fusion Performance**

- Rotation boundary condition of 4 krad/s is used, relatively modest value within 3-10 krad/s range of predictions
- Core rotation determined from TGLF momentum flux and 35 N·m source
- Deuterium Mach numbers are modest: M_{core}~0.2, M_{ped}~0.04
 - Significant for heavy impurity transport
- Q_{fus} approximately doubles due to density peaking and increased temperatures caused by rotation shear
 - Grains of salt: Q values are idiosyncratic to the impurities and radiated power, there are nonlinearities and initial condition is important, residual stress not included in core (see Grierson EX/P6-3 this afternoon)

20

Performance Improvement From Rotation Shear Is Due to Reduction of Low-k Turbulence and Increase in Density Peaking

- In simulation with rotation, low-k turbulence => outward particle flux, intermediate-k => inward particle flux
- Without ExB shear, total flux would be outward, force TGYRO to flatten density profile
- ExB shear suppresses low-k turbulence more strongly, so flux is balanced even with a peaked density profile
- Increased T_e due to reduced transport further destabilizes intermediate-k turbulence, increasing inward particle flux, as seen in similar studies¹

21

C. Chrystal/IAEA FEC/October 25, 2018

[1] Grierson, Phys. Plasmas **25**, 022509 (2018)

Performance Improvement From Rotation Shear Is Due to Reduction of Low-k Turbulence and Increase in Density Peaking

- In simulation with rotation, low-k turbulence => outward particle flux, intermediate-k => inward particle flux
- Without ExB shear, total flux would be outward, force TGYRO to flatten density profile
- ExB shear suppresses low-k turbulence more strongly, so flux is balanced even with a peaked density profile
- Increased T_e due to reduced transport further destabilizes intermediate-k turbulence, increasing inward particle flux, as seen in similar studies¹

C. Chrystal/IAEA FEC/October 25, 2018

[1] Grierson, Phys. Plasmas **25**, 022509 (2018)

Performance Improvement From Rotation Shear Is Due to Reduction of Low-k Turbulence and Increase in Density Peaking

- In simulation with rotation, low-k turbulence => outward particle flux, intermediate-k => inward particle flux
- Without ExB shear, total flux would be outward, force TGYRO to flatten density profile
- ExB shear suppresses low-k turbulence more strongly, so flux is balanced even with a peaked density profile
- Increased T_e due to reduced transport further destabilizes intermediate-k turbulence, increasing inward particle flux, as seen in similar studies¹

C. Chrystal/IAEA FEC/October 25, 2018

[1] Grierson, Phys. Plasmas **25**, 022509 (2018)

Simple Scaling Relation Offers Favorable Prospect of Achieving **RMP ELM Suppression in ITER**

- Low rotation RMP ELM suppression is hard to achieve, hypothesized to be a result of inward movement of $E_r = 0^1$
 - $-\omega_{\perp,e}$ also hypothesized², movement is typically correlated with E_r=0 movement
- Relation for $E_r=0$, divergence free flow:

$$\mathbf{V} = k(\psi)\mathbf{B} + \omega(\psi)R\hat{\varphi} \Rightarrow -\frac{\nabla P}{nZe} = \omega RB$$

- ITER needs less rotation because of:
 - Larger gradient scale length (larger size) - Larger poloidal field
- to 0.2-0.5 krad/s for ITER, <3 krad/s prediction - Effect of RMP field on rotation prediction still needed to fully answer this question

5-9 krad/s of pedestal top rotation is lower limit for suppression in DIII-D, translates

[1] Paz-Soldan, Nucl. Fusion (in review) [2] Moyer, Phys. Plasmas 24, 102501 (2017)

Conclusions

- Edge rotation prediction for ITER is made with increased confidence: 3-10 krad/s
 - Fast-ion effect on results is relatively small while reducing discrepancies between predictions
 - Neutral particle induced transport found to be small
- ITER, though large and with relatively small NBI torque, will still have significant enough **ExB** to decrease turbulent transport - Prospect of RMP ELM suppression is good
- These rotation predictions must now be integrated with effects from intrinsic and applied 3D fields

BACKUP SLIDES

Intrinsic Rotation Does Not Vary with Gross Change in Neutrals **Associated with Divertor Detachment**

30

20

 J_{sat} (A/cm²)

Neut. Press. (mTorr)

(keV)

0.4

0.3

0.0

- Detached divertors have higher neutral particle pressures
- These conditions were created with significant main-chamber gas fueling in order to increase plasma density
- These changes are expected to increase neutral densities inside the confined plasma, but this causes no significant change to the intrinsic rotation

- So long as T_i does not begin to drop

 This result supports conclusions drawn from open/closed divertor comparisons

krad/s)

З

Dimensionless Parameter Scan Executed in ECH H-modes in DIII-D Achieved Desired Variation in ρ_*

• $\rho_{\rm w}$ was decreased by ~30%, the	0.012
expected range achievable in	0.010
DIII-D with limitations on field	0.008
variation due to ECH absorption	0.006
	0.004
 Change in Z_{eff} is likely due to a 	0.002
change in carbon source due to	0.000 3.0
a hard to control change in	2.5
boundary conditions	2.0
 This is a potential confounding factor for the results, though previous work 	1.5
has not seen causal changes in	1.0
intrinsic rotation with Z _{eff}	0.5
	0 0

Simple Scaling Relation Offers Favorable Prospect of Achieving **RMP ELM Suppression in ITER**

- RMP ELM Suppression at low rotation is thought to be difficult due to the movement of the $E_r=0$ crossing to lower minor radius
- Using the divergence-free form of velocity:

a relation for E_r=0 can be made into scaling requirement for Mach number

$$-\frac{\nabla P}{nZe} = \omega RB_{\theta} \Rightarrow -\frac{1}{2}$$

- $-\omega$ is the toroidal rotation frequency if poloidal rotation is zero, B approximated as toroidal field to make factor of q
- We will assume the normalized gradient scale lengths will NOT change in ITER 5-9 krad/s of pedestal top rotation is current lower limit for RMP ELM suppression in DIII-D, yields a lower limit of 0.2-0.5 krad/s for ITER, <3 krad/s prediction - Effect of RMP ELM suppression on rotation prediction still needed to fully answer this

- $\mathbf{V} = k(\psi)\mathbf{B} + \omega(\psi)R\hat{\varphi}$
- $RB_{\theta} \Rightarrow -\frac{\nabla P}{nZe} = \omega RB_{\theta} \left(\frac{R\sqrt{T/m}/B/a}{R\sqrt{T/m}/B/a} \right)$ $M\epsilon = -\rho_* q(\lambda_T^{-1} + \lambda_n^{-1})$