Comparison of energetic particle radial transport between single- n and multiple- n simulations of Alfvénic modes

 G. Vlad, S. Briguglio, G. Fogaccia, V. Fusco, C. Di Troia, E. Giovannozzi, X. Wang and F. Zonca- Comparison between single- n and multiple- n simulations of Alfvénic modes has been performed, using the HMGC code; simulations with the toroidal mode numbers $1 \leq n \leq 15$ have been considered.
- In single- n simulations, the equilibrium considered (circular cross section, low inverse aspect ratio, $\varepsilon_{0}=0.1$), in presence of a Maxwellian Energetic Particle (EP) population, results as either stable ($n=1$), weakly unstable ($n=2,3$ and $n=13,14,15$) or unstable ($4 \leq n \leq 12$), with $n=4,5,10$ exhibiting the larger growth-rates; a variety of modes are observed (TAEs, upper and lower KTAEs, EPMs). Weak or negligible EPs radial transport is observed at saturation, for all the toroidal mode numbers considered.
- In multiple- n simulation, NL mode-mode coupling from MHD terms and mediated by EP term (three wave coupling), strongly drives sub-dominant modes already during the linear growth phase of the dominant modes; radial profiles of e.m. fields (ψ, ϕ) and real frequencies are substantially different from linearly unstable, single- n modes; all the toroidal modes saturate almost simultaneously, inducing enhanced EP transport (w.r.t. the single- n simulations). No evidence of "domino" effects is observed in multiple- n simulation.

Single- n simulations vs. multiple- n simulation:

EP radial density profile variation at saturation

