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Divertor Detachment Front
Easily Runs up to the Main Plasma
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Deleterious effect on H-Mode pedestal.




Lithium Vapor Box Divertor Concept

v Provide a localized cloud of Li vapor

away from main plasma /
e

» Evaporation at ~ 750° C (

» Condensation at ~ 3-400° C (
(determines DT pumping)

Return liquid lithium to evaporator
v Creates strong vapor gradient.
v Detachment front cannot run up to x-point.
» Detachment front location is resilient to variable heat flux,

» Cannot be achieved with gaseous impurities - pumping is too weak




UEDGE Model with Lithium

v UEDGE has a purely diffusive model for lithium vapor transport.

v Based on collisions of lithium atoms with plasma ions.
No Li-Li collisions.

v Inaccurate in regions dominated by lithium convection/viscosity:
Navier-Stokes regime.

» Transports lithium in plasma, calculates radiation self-consistently.
v Issues with thermal force model at high impurity fraction,

v Achieves detached plasma in Fusion Nuclear Science Facility (FNSF)
with nearly 100% lithium radiated power. In “real” world would
Include other (seed) impurities.

v Upstream lithium fraction depends on upstream electron density.




UEDGE Predicts Detachment in FNSF
with Lithium in Simplified Divertor
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UEDGE Lithium Ionization &
Recombination in Near Local Balance
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Recombination roughly equals ionization at a given Z position.
In effect, plasma acts like a mirror (with a cricket bat).




SPARTA Provides Alternative Model for
Lithium Vapor, including Convection & Viscosity

» Using SPARTA Monte-Carlo Direct Simulation code for lithium vapor
o LI-Li collision model based on known vapor viscosity vs. T.

v Model evaporation and condensation based on known

equilibrium Li pressure vs. T, and Langmuir fluxes from surfaces.
o Lithium - Plasma interaction
v Assume absorption of lithium at Te = 0.2 eV
» Recombination at the same point.

o Lithium leaves along B with Ty = E} i = 0.2 eV




A Simplified Lithium Vapor Box Divertor
Based on UEDGE Results
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Allows more Li efflux, but needs less total evaporation
Makes experimental implementation easier,
Including starting with a toroidal segment




Lithium Accumulation on First Wall
will be Very Low

v 140 g/s of lithium evaporated for Prad = 66 MW,
v Assume all of this is deposited on first wall, T, ~ 600 C.
» Evaporation rate at 600 C = 2,66 g/s/m>
+ Area of first wall ~ 300 m2

» Total evaporation rate with multi-monolayer surface
coverage = 800 g/sec

» Can't even accumulate a few monolayers of Ll

» LiH decomposes in << 1 sec at 600 C.




SPARTA Shows Strong Variation in
Lithium Absorption with Detachment Vertical Position
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Lithium evaporation from private flux side is much more efficient
when leg is closer to evaporator,
(Does not include radiative heating of evaporator.)




SPARTA Gives Very High Positional Resilience
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Lithium injection from private flux side is much less efficient
as leg moves away from evaporator - Positional resilience.

(Does not include change in radiative heating of evaporator.)




Two-Sided Injection Has Low Resilience
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Little variation in Li absorption as leg moves away from
evaporators. Same low resilience with bottom evaporation.




Lithium Return Flow is Determined by Balance
between Capillary Pull & MHD Drag
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Sandwich Flow Channel Inserts Reduce APuxp
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Gap in Flow Channel Insert orients towards divertor surface.
Works top and bottom, leaves margin for other effects.




Conclusions

v UEDGE predicts detachment in FNSF with Li alone,
shows lithium dynamics at detachment front.

v This provides a preliminary physics basis to
optimize Lithium Vapor Box Divertor using SPARTA,

v A divertor with private-flux-side lithium evaporation near the
bottom of the divertor leg -

v Provides adequate lithium for detachment.

v Provides strong positional resilience of the detachment front,
without baffles. No issue of Li accumulation on 600 C surfaces.

v Sandwich Flow Channel Inserts facilitate capillary force to return
140 /s of lithium across 7T magnetic field.

v Integrated modeling, design, & experiments are needed.




