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Predicting core plasma performance is critical to
design, build and operate fusion reactors

r Core fransport in fokomaks dominated by furbulence.
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Predicting core plasma performance is critical to
design, build and operate fusion reactors

r Core fransport in fokomaks dominated by furbulence.

[A. Creely, EPS 2018]
v Many studies are performed to validate fransport Electrons NS

models in steadly state.
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Predicting core plasma performance is critical to
design, build and operate fusion reactors

r Core fransport in fokamaks dominated by furbulence. ITER prediction (Gerson, PoP ]

v Many studies are performed fo validate transport TGLF
. ; TGLF (w/o
models in steady state. B\ densityevol)

v Predictions for buming plasmas are being made with

present modeks.
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Predicting core plasma performance is critical to
design, build and operate fusion reactors

r Core fransport in fokamaks dominated by furbulence. ITER prediction (Gerson, PoP ]

v Many studies are performed fo validate transport TGLF
. ; TGLF (w/o
models in steady state. B densityevol)

v Predictions for buming plasmas are being made with

present modeks.

1 However, some experments (.g. cold-pulses call the

models into question.

1 [fmodels cannot capture behavior in present
experiments, why should we frust them for predictions in
fufure devicese

Alcator 00 02 04 06 0§ 10
T C-Mod
|I|" PSFC { P. Rodriguez-Femandez / IAEA-FEC 2018 / Gandhinagar, October 27 2018 p




Transient fransport can be tested as an edge
cold pulse travels fo plasma core

' n cold-pulse experiments,
edge temperature drops and
fransient fransport s studlied cs

perfurbation fravels fo core.

r Expected response (modeled by

diffusion):
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» Delay in fime
» Decreasing in amplitude.

Time (A.U)

Alcator
IifIPSFC
{ P. Rodriguez-Femandez / IAEA-FEC 2018 / Gandhinagar, October 27" 2018

CARTOON




Cold-pulse experiment is a classical example of the
s0-called “nonlocal” ransport

1 Cold-pulse experiments show counter-

example 1o dlffusive, local fransport

1 Atlow collsionalty,

core temperature rapidly rises affer edge

colo-pulse injection.

v Post work referred fo these phenomena os

"non-local” ransport events,
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Why should we care about cold-pulse propagation?

v Observed in >10 machines, both tokamoks and stellarators,
1 No explanation based onlocal physics has been found so fr that match experiments,

v Featured os nonlocal transport and validation challenge inTeview arficles,

calor
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Why should we care about cold-pulse propagation?

v Observed in >10 machines, both tokamoks and stellarators,
1 No explanation based onlocal physics has been found so fr that match experiments,

v Fegtured as nonlocal fronsport and validation challenge in review arficles.

» Review article on nonlocal transport [lda NF '13]:
"[...]the violation of the familiar local expression compels us fo explore new approaches fo

the predictive modeling for buming plosmas.”

» [TER transport physics basis paper [Doyle NF ‘07]:

"[...]The observed fast radial propagation of the pulses from the plasma edge fo the core

has been a challenge fo be explained by local alffusive fransport models,”
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Transient fransport is studied using perturbative
cold-pulse injections with Laser Blow-Off

1 Edge cold-pulses are injected using loser blow-off (LBO| technique.

v Laser pulse ablates coating in glass slide, resulting in flux of neutrals to plasma.

C-Mod

/
/o
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Transient fransport is studied using perturbative
cold-pulse injections with Laser Blow-Off

1 Edge cold-pulses are injected using loser blow-off (LBO| technique.

v Laser pulse ablates coating in glass slide, resulting in flux of neutrals to plasma,

' Asaconsequence: RCEN | | 0
f T ' | [ine-average densty | | -
» Radlation sink 2 4P, Sl | | 3
| ; Total radiation ;
» Density “oump” = A, , -dL——-—L—i—-L.
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Strong effect of density and current on temperature
inversions is observed experimentally

v Temperafure inversions get
weaker as density increases, ond 10%

eventually disoppear. 5

v Temperature inversions return af : 0%
high-densiy with high-current, Z“ _5%

v Tronsition coincidles with infrinsic 10%

rotafion reversal density for most i

Ohmic plasmas.
A%
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Strong effect of density and current on temperature
inversions is observed experimentally

Goal

Con we reproduce this effect (including speed ana magnitude) and

1§ frendls with density and current using a local model?
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Integrated modeling of perturbative fransport
phenomena performed using TRANSP+TGLF

v Plosmaevolufionmodeled 3 ¢ ) | :
o (”('T(') =-V. e T TY:'N('U(' a Qi(' - U V (N,‘T,’) T Q
with fluic-lke (TRANGP). ) o )

!

30
D0t

-

— L) =-V- (q, t: T,n,u,) FQ, 4u- V(0T 40,
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Integrated modeling of perturbative fransport
phenomena performed using TRANSP+TGLF

Transport
v Plosma evolufionmodeled 3 ¢ .

-—(n,Ly) ==V {lq,
it licHie (IRANGP| ik ‘ ‘

T(”(u() a Qi(' =l V (”iTi) T Q(

v Turbulent hransportgiven by~ 30

-l =-V: q,'

' T,N;U,) Qi - VnT) 4 Q,-
TGLF-SATI model' 20!

|
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Integrated modeling of perturbative fransport
phenomena performed using TRANSP+TGLF

Transport
v Plosma evolufionmodeled 3 ¢

5 A
- — ”(‘T(' = _v “{1Ye _T("N(’u(’ _( o~ Uj* V ”I'T!' T ( ¢
with fiic-fke (TRANSP). Hz)f( ) ‘ ) ) 2 Wi

v Tubulent ronsport gvenly 90,
port given by W(,,'T,.):_v. q,'
TGLFSATI mode!' L0t

|

' T,N;U,) Qi tu VinT) + Qi

v TGLF-SATI is 0 quasiinear mocke! with a saturation rule that is fitted to @ database of nonlinear GYRO

simulations (including muttiscale). This leads fo:
» Nonlingar upshitt of crifical gradient, (P ).
» Higher “sfffness”. as captured by incremental thermal aiffusivity ().

» Amplification of Tropped Electron Mode ariven ransport (TEM).

Alcator * Stoebler, NF 17
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lon and electron temperatures are evolved unti
reaching steady-state in the simulation

N\ ) Low-density
1 Before perturoing P,y ond n, HEREA Sim. T,

. o | = Sin. T
steady-stote is reached n the smulafion, % 1 1 Exp it T,

- - Exp. Fit T
+ Boundary conditions for T, and T, arre

chosen at p, =0.9.

v Predlicted profiles close fo expermental ) Bighednsity

values (within 2],

v Turbulent and neoclassical fransport as

predicted,

et 03 04 05 0.6 07 08 09 1
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Integrated modeling of perturbative fransport
phenomena performed using TRANSP+TGLF

o (”(‘T(') =-V.

. - (-0 VinTi) £ Q)
with fluic-ke (TRANSP). i

v Plosmaevoluionmodeled 5 0 ( ) ) :
q, + 5T,,n(,u(,

v Turbulent fransport givenby 3 "oy 5T ( o
TGLF-SATI mod! 5()7(”" )=-V Gt o imy ) 4Gt L)+ Q)
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Integrated modeling of perturbative fransport
phenomena performed using TRANSP+TGLF

Sources/Sinks

' Plosma evolufion modeled 30 j T
R R (q, J ?T(n(u() Q- - V(T 4{0
with flicHike (TRANSP). 20t )

v Turtoulent transport givenby 3¢
TLESATI model )0t

(”,'T;) ==V (qz T gTﬂ';U,) Qi +u; VinT) 4 Qi

1 Radiation sink = Changes in source term:

Qe :POH_Pmd
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Integrated modeling of perturbative fransport
phenomena performed using TRANSP+TGLF

Sources/Sinks
v Plasma evolution modeled ) :
5T(,N(,u(,

- Qi(' =l V (N,‘T,’) u Q(
with fluic-ike (TRANSP|.
v Turbulent transport given by

TGLF-SATI model. ‘Hf ) /"1“1)‘“21( quz v(”z z)JFQI

— 32
Density gradient

v Radiation sink = Changes In source term: ftens 28

A 24

= Py - Py -
Qe OH d | : _ 20 é’

v Density pulse leads to change in density

graclients = Effect in fransport.
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Experimentally-constrained model of LBO injection
s infroduced in the simulations

v Radiafive losses and density profiles were not available in high fime resolution.

1 We made an educated guess: expermentally-constrained Gaussian pulses.

» Edge radiafion sink consfraingd

0y fotal radiative power

' Experment

| ‘ (e 4
Vo, e |
j(AXUV bol ) ’-> Experiment (TC])

[bolometers).

» Density perturoation

constrained by line-average

AdNg) (1029 2)

density (Interferometers|.

Time (ms)
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Core T, inversions following edge cold-pulses appeared
spontaneously in the low densify condifion

 Electron and ion temperciures are

allowed o evolve self-consistently.

1 Core T, promptly increases ot low

density following edge T, arop.

Core T,, pN=0.37
Edge T, pN=0.81

20 40 60
Time (ms)
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Simulations with variations of density and plasma current
show that frends are captured by the model
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Simulations with variations of density and plasma current
show that frends are captured by the model

1. Low density simulation exhibits

core femperature Increase.

» TEMs are stabiized by the arival
of density pulse = Less

fransport,

009 o-dir
000 i+ dir

000 hefore

0
N
[U)
A
[
Q
o '
Y
N
> '

calor

Al
IifIPSFC "

P. Rodriguez-Femandez / IAEA-FEC 2018 / Gandhinagar, October 27" 2018



Simulations with variations of density and plasma current
show that frends are captured by the model

2. Increase in density mokes core

effect disappear.

| » TEMs are stabilzed, but 1Gs
1.2 14

' Tine g become more unstable = More

08¢ c-dir | 090 Defore
fter

0
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Time ()
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Simulations with variations of density and plasma current
show that frends are captured by the model

3, Increase in current mokes core

effect oppear again.

» TEMs are stabilized = Less
314 15016 17
Time (s) i @ fransport,

009 c-dir
000 i+ dir
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Simulations with variations of density and plasma current
show that frends are captured by the model

Conclusion

TGLF-SATT local mockl captures temperature inversion (experimentally-

relevant magnitude ana speed) and frends with aensity ana current,
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Main message: Nonlocal effects are not needed to capture
cold-pulse phenomena in fokamaks plasmas

Summary.

v For 20 years, cold-pulse experiments suggested missing piece in fransport modkels,
[Gentle PRL ‘9]

' Dedicated experiments in C-Mod were designed fo isolate cold-pulse phenomenon,
[Rodriguez-Femandez NF *17]

 Simulation results from C-Mod show that local transport models capture full dynamics,

[Rodriguez-Femandez PRL ‘18]
Future work:

v Experments in DIIlD o track density pulse propagation with reflectometer,

| [Come see my invited talk of 2018 APS-DPP PI2,00003]
v Self-consistent model for particle fransport,
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Back-up Slides

DIlI-D Experiments and Modeling
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Predictions were performed in DIlI-D, where cold-pulses

were never reported in the literature

Empirical expectation
for DIlII-D experiments

= Empirical scaling with other machines suggests

n . . o @
that temperature inversion would happen in DIII-D T o 5
A (+)ATS™e -
below n20q95~1.0 - 0.5 S~
= E
= New predictions using a simplified injection were f E
used to identify conditions where temperature o E
WE

INnversions OCcur.

3 4
SIMULATION o [Gao, NF ‘14]
0.2 Low Density High Density
=) 0.1—_/\ o+ |k — 0=0.3 ]
(0]
= 0.0F = B \/' 7
B -0.1f 1 F .
_0.2 L - L L L 1 1 I
0.2 O 215 5|0 75 100 0 2|5 510 75 100
S 0.1} . £ — 0=0.85
Q
< 0.0} i
_02 ! 1 ] 1 ] 1 1 |
Alcator 0 25 50 75 100 0 25 50 75 100
Time (ms) Time (ms)

1TF C-Mod
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New experiments in DIlII-D confirm that TGLF predictions

capture the 1/R dependence

AT, (keV) ATe (keV)

= New LBO is used to infroduce cold pulses in DIII-D. ' o oo Ly LLALLL

—0.05f : p=(l).15 1

= Temperature inversion occurred at predicted 005 Fn

- 0.00 |prmr . L=

plasma condition. —005p | p=02 |
: 0.05[ 1

' 0.00 et il A B A S Ao d

- : %—0.05- ' p=0.25

7 N —
C o1l C 2%

TR ey B R iy

-0.1 p=0. —0.05} p=0.35 ]

] . ! v 1 . I |
-? 0.2F T I o005 |

3 o PP & B e 0.00 e oo

O 01} |  p=045 .9 —005f | p=045

= il L o[ '
8:3' i : 0.00 frisirig sizns

—01fp " p=0.55] —005p | p=055

0.2 oosf 1+ ]

g:(1)~ . ] 1X1]1] S ————

-0.1} ,!V p=0.65 —0.05f ' p=0.65 ]

02T oosf 1]

g'(l)' i_ g (X111 S PN SN

Alcator —0.1} P=0.75 ; —005] £=0.75 ]

[
|
~50 0 50 100 150 -50 0 50 100 150
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TGLF-SAT1 is used to evolve temperatures to steady-state,

revealing underprediction of fransport

= |Integrated modeling is performed using

experimental measurements (post-diction). 3.2 :

= Steady-state in reached in the simulation — TeFit ||

2.4 4 ¢ — TeSim |!

before the perfurbation is introduced. N t - T Fit |

% — T; Sim |

= Boundary conditions for T, and T; are ~ 1.6} |

chosen at p, = 0.9. - i

0.8 -O ¢ —_— = ¢ T N :‘ i

= TGLF-SATI strongly under-predicts core e — m |
transport for this low-density Ohmic DIIl-D 0 | | | T e

'8.0 0.2 0.4 0.6 0.8 1.0

plasma.
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Density pulse consistent with reflectometer data

is infroduced in simulation

= A big caveat in the C-Mod work was the imposed density pulse : l oo I

(constrained only by line-integrated interferometer measurements).

= Does the density pulse actually move that faste

= |n DIlI-D experiments, we can sort that out thanks to high time

resolution density profile reflectometer.

L | N
= New experiments in DIlI-D confirm a density pulse that travels quickly. 0 bt/ Pt
_10:...‘: ..... p=955.
= Core density pulse with Gaussian shape is fitted to reflectometer 10 ]
OW WI
data. _1oby . ,P=0.65 |
wf o+
i |
0 | |
Alcator i . P O
m -50 0 50 100 150
i C-Mod 20 10
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Core temperature inversion is reproduced in simulations using

experimentally-measured density pulse

AT (keV) | oui-p |

= Simulated core temperature traces (black) consistent with

experiment (colored)

= Disagreements between simulation and experiments could

be linked to the predicted background steady-state

profiles.

= Strong over-prediction of steady-state T, leads 1o VT,-

driven TEM turbulence, thus density pulse has less effect

than expected for a TEM-dominated plasma.

Alcator .
|||"| PSFC C-Mod -50 0 50 100 150
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Reconciling "nonlocal observations” with local models

required high-stiffness of TGLF-SATI

= Past work referred to these as nonlocal effects, as local plasma

parameters seemed unchanged before T, increases. Core density

= Modest change in density leads to T, increase. 3 2.0t o
o [ |
. . : . @ 1.5¢ 2
= Change in gradients (& v, Z.¢¢) provides enough TEM stabilization. > i -
o +-Y[ i
-
1.50 [ . . . Q '
e | 90 © 0-5 :
|
0.0 ~ 1 '
Verysmiall | 80 =40 0 40 80 120 160
heled core density | 70 Time (ms)
& change | 60 5
£ | 50 & Core density gradient
S 1.00 | ® 6
) | 40 § -
o = X
: « .. I 30 = OF===
0.75 ’ i 8 _g6tL I
T, inversion : & < :
region \ 10 < —12¢ '
D) |
0.5 ' ' ' ' ' 0 5 —18}
%.o 0.2 0.4 0.6 0.8 S .
i —24 : . 1 '
Alcator PN |om-p | 240 0 40 80 120 160

MiTIPSFC  CMed Time (mo)
I P. Rodriguez-Fernandez / IAEA-FEC 2018 / Gandhinagar, October 27t 2018 395



Reconciling "nonlocal observations” with local models

required high-stiffness of TGLF-SATI

= Past work referred to these as nonlocal effects, as local plasma

Core growth rates
(only electron direction)

parameters seemed unchanged before T, increases. 0.05 -
= Modest change in density leads to T, increase. 0.04 e®e¢ before pulse
2 0.03 ® |e0®¢ afterpulse
= Change in gradients (& v, Z.¢¢) provides enough TEM stabilization. © '
© 0.02
1.50 [ . . . © o
= | 90 0.01+ °,
| 80 0.0 e,
cordimmy 1 o L
—~ | Kops
5 change | 60 5
@E | - = Core and edge temperatures
S 1.00 | e 90 . . , ]
s | 40 & 60 I
& p \, | 30 S i :
0.75 ' = 30| i
T, inversion : & > :
region \ 10 z‘” OF -
| il
0-585 0.2 0.4 0.6 0.8 | 0 | —30¢ :
pN DI"‘D _60 I | ] |
aceior ~40 0 40 80 120 160

TH C-Mod :
I II | Ps FC w P. Rodriguez-Fernandez / IAEA-FEC 2018 / Gandhinagar, October 27" 2018 Time (ms) 36



Density perturbation is needed to recover cold-pulse phenomenology, but

widely observed experimentally

[Galli, NF *99] RTP

- e 205
2206

- — — -207

2 06 -----208

® =10

= 04 .';

0 - : - —r

Q\Iéator
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P. Rodriguez-Fernandez / IAEA-FEC 2018 / Gandhinagar, October 27" 2018

| 3-TEXT |
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(b)

[Shi, NF ‘18]

—e—T_before SMBI 4= 0.2495s wp
—e—T_after SMBI @ 02555 wp

n, before SMBI
n, after SMBI
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In C-Mod, density perturbation magnitude scan shows that temperature

inversions are still recovered with small density pulses

g.0 X101 . . 2,64 X10°

~16%

- Core Te

0.3} 0.3
0.0 : L L 0.0 L L :
0.30 0.45 0.60 0.75 0.30 0.45 0.60 0.75
Alcator 5 p
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MIT Laser Blow Off (LBO) is providing capabilities for

transport studies on DIlI-D

= MIT LBO commiissioned in
Feb. 2018 at DIlI-D
(T. Odsircil & N.T. Howard)

d Injection of trace impurities into
DIlI-D core plasma for routine

investigations in impurity transport

and confinement.

Q Also, specialized cold pulse heat

transport experiments.

Alcator

Steering
mirror

Moving stage with
focusing lens

Motorized iris

Alignment laser
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The DIII-D LBO System is Integrated with the DIII-D

Thomson System and Aftached to the 105R+1 Port

ng('::tral Thomson Room L B O | aser
L B O b OX beam tube
R+1 port at 105° p 4 <
’ Laser Bench Laser Table
2
$ % Y
> g
5 a
- - /
| |
Granite Bench beam tube Lower
Pedestal

Alcator
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Back-up Slides

C-Mod Modeling (ext.)
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Simulation at fixed density with current steps shows that position of “temperature
flex point” moves with rational surfaces, as observed experimentally

0.5 A | E/\me) (102°m-3) /\_
A i\ Praa (5 MW) f\

. e e A

P S s T ' E b): I ]
— t=O0ms |  Tvs-.____—=3 4 . g "

-- t=+10ms ety ,

0.0 1 1 __a) 0 Ul ‘} “ |
0.45 0.55 0.65 ; ; A

0.2}

0.10 _0.15 0.20 0.25 0.30 _ 0.35 0.0
1/des 1.1 diged des O 1.4 1.5 1.6 1.7
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Simulations with density ramp and density steps show that experimental trend is

well-captured and transition happens as ITG/TEM transition occurs

IP (MA) (ne> (10205“1-3) Prad (5 MW) ' a)
" ' Ve j/\ ]

T (keV)

il
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Linear stability analysis shows that temperature inversions occur when electron

turbulent fransport is more sensitive to TEM drives
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Back-up Slides

C-Mod Modeling (PRL)
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Ohmic C-Mod discharge with density ramp that exhibits LOC/SOC transition is

used for cold-pulse studies
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lon and electron temperatures are evolved until

reaching steady-state in the simulation

= Before intfroducing perturbation in P,,4 and n,, steady-state must be reached in the simulation.
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= Boundary conditions for T, and T; are chosen af p,, = 0.9.

Predicted profiles close to experimental values (within 20).

Turbulent and neoclassical tfransport as predicted (not tweaked).
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Core T, inversions following edge cold-pulses appeared

spontaneously in the TRANSP simulations with TGLF-SAT1

300 '''''' T T T o N [ S o e S S L B R R z
: a) 5 ms \
__ 150" 1 <02} m""\
> ' 1 =
()] ]
— =
|—® 2 Fast rise : 0.1k = _
< [ recovered g
300 e = TR Lmet T T 7T Tttt =150 _ pN=0'37_ |
I : | i 300 R U e s o B et s s xpN=0181 0 1 1 1 1 d)
. 0 10 20 30 40 50 60 70 '
150} | Time (ms)
S HEE " 40 "L Y T O e A Snl1all inlcreas:a I ]
q} F recovered b) 1
S 100 | -
"0 < |
H | | \q% ]
< [ : K -850} .
=150 | y =0.36]
E Core T, p,=0.37 -0.781
i " o] A O IR (T . N 1 E
! EdgeTe,pN =0.81/ 0 10 20 30 40 50 60 70 1001020 30 20 50 60 70
—300 "~ .O """ 2'0 """ 40 """ 60 """ Time (ms) Time (ms)
. 10_ '''''' T T T |_| ] . . S— . S—
Time (ms) allt, A=0.37] 0.4f f) e
: 3} p=0.37 R - |
t  w¥y lon Mod
. _ AAA Iglzctrgnel\jlodes ‘*ﬁAx
o “ A
i WL
. X N AN
'Alcator 0 10 20 30 40 50 60 70 0903 100 107
Time (ms) KeDs

1H C-Mod
I II | PS FC w P. Rodriguez-Fernandez / IAEA-FEC 2018 / Gandhinagar, October 27 2018 48



At high density, the prompt core T, increase disappears

and a “mixing effect” becomes evident
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Differences in behavior can be explained by

overprediction of steady-state temperature

= At low density, core temperature increase is higher than experimental value.
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Differences in behavior can be explained by

overprediction of steady-state temperature

= At high density, core temperature drops

and then increases.
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Full phenomenology is only recovered by new saturation

rule TGLF-SATI

= TGLF-SATI1 with only low-k modes worked = ETG “multi-scale” effects unimportant.

= TGLF-SATO could not reproduce the timing and inconsistent with v* scaling.

= SATI v.s. SATO: 300
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The propagating front of a cold-pulse is a region

of higher gradient
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A localized drop in heat flux leads to an increase in

temperature inner in the core
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Back-up Slides

Cold-Pulse experiments (NF)
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Recent work shows that correlation between these effects

and intrinsic rotation reversals is not universal

= Transition density = intrinsic rotation reversal.
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= Relationship not found at high current. 2.4 |
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Shot-by-shot analysis show that transition to standard response

is not abrupt

= |n confrast to past work, tfransition from "non-local™ e

to standard transport is smooth = 01
=
= Core %|AT,| depends strongly on I, and Pgp 2
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Temperature Inversions have complex dynamics
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TGLF does indeed capture a lower stiffness in
SOC plasmas compared to LOC

A(n-eVTe) (m MJ/m)

e e
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Experiments show that core temperature inversions take

place in plasmas with higher stiffness
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Observed mixing effect motivates new parameterization of T, response

« LBO system at C-Mod allows multiple injections and controlled amount of impurities

* Mixing process. Inward-propagating Edge cold-pulse + Temperature Inversion
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Perturbation amplitude depends on density & auxiliary heating

« Unigue shot-by-shot analysis of 93 C-Mod
plasmas (> 350 cold-pulses) reveals:
= T, Inversions happen at low (n,),
= Core £|AT,| depends on (n.);, I, and Pgg

= Thresholds in (n.), depend on I, and Pgg
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At T [, temperature inversions are observed when rotation

nas reversed

At T I, unified model for momentum & heat transport breaks up

T, inversions observed with both co-current and counter-current
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At T [, femperafure inversions are observed when rotafion

nas reversed

« Rotation reversal process does not change inversions behavior
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At T Prr Temperature inversions disappear with co-current

rotation

« Addition of RF power also breaks correlation

« T, inversions and standard drops both observed with co-current V,,,
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