
Edge poloidal pressure asymmetries can drive large shear flows and ${\cal E}_r$

- MHD equilibria with localized poloidal pressure asymmetries necessarily have large **shear flows** and E_r at the edge.
- Asymmetries **above** the midplane produce $u_{\theta} < 0$ and $E_r > 0$ (Figs. (a)-(c)). A positive E_r is **unfavorable** for confinement; it will increase P_{LH} .
- Asymmetries below the midplane produce $u_{\theta} > 0$ and $E_r < 0$ (Figs. (d)-(f)). A negative E_r is favorable for confinement; it will decrease P_{LH} .
- This physics provides a qualitative explanation for the ion ∇B-drift-direction dependence of P_{LH}.
- Deliberately-introduced asymmetries can be used to improve or degrade confinement.

