

DEPARTMENT OF ATOMIC ENERGY, GOVERNMENT OF INDIA INSTITUTE FOR PLASMA RESEARCH, GANDHINAGAR, INDIA

Overview of Operation and Experiments in the ADITYA Upgrade Tokamak

Rakesh L. Tanna

Institute for Plasma Research, India On behalf of the ADITYA-U Research Team

The Aim:

✓ A small/mid-size tokamak with Divertor Configuration (single & double null)

 \checkmark To carry out experiments relevant for Bigger Machines (runaways, disruption etc.)

✓ Easier access and Smaller duty cycle

<image/>	Major radius (R)	0.75 m
	Minor radius (a)	0.25 m
	Plasma Shape	Circular / Shaped
	Toroidal Field	1.5 T
	Plasma Current	150 - 250 kA

ADITYA Dismantled

ADITYA-U Operation started –Dec'16

Transforming ADITYA to ADITYA-U Tokamak

Divertor coil locations identified using Plasma equilibrium reconstruction with equilibrium code IPREQ

<u>New Inclusions in ADITYA – U Tokamak</u>

1. New Vessel with circular cross-section

Major Radius: 0.75 m Minor Radius: 0.3 m Volume ~ 1.6 m³ Number of Ports: 114

Material: Stainless Steel

2. Three sets of divertor coils

(Inner)

R.L. Tanna et al, 27th IAEA Fusion Energy Conference, 22-27 October, 2018, Gandhinagar, India.

(Inner)

New Inclusions in ADITYA – U Tokamak (Continued)

Isometric view of Limiter and Divertor

Plasma Facing Components

High purity graphite IG-430 tiles

High field side toroidal limiter with small poloidal extent

Two Partial Poloidal Limiters on low field side

Diverter Plates: To be installed in the machine in the phase III of the operation.

Toroidal belt Limiter

Safety and poloidal ring Limiter

New Inclusions in ADITYA – U Tokamak (Continued)

42 GHz ECRH system for Aditya-U (Operational)

Microwave Source (Gyrotron); Frequency: 42GHz; Power : 500 kW

The system is directly connected to tokamak using a BN window and UHV gate valve

LHCD System for ADITYA-U

Passive Active Multijunction (PAM) launcher (to be installed)

ICRH system for ADITYA-U (to be installed) Frequency: 20 -30 MHZ; Power: 500 kW; **2 Strap Antenna PAM** Parameters Values 3.7 GHz Frequency 250 kW Maximum power 2/3Number of modules in the toroidal / poloidal directions [Poster by Yogesh Jain et al, FIP/P3-53]

New Inclusions in ADITYA – U Tokamak (Continued)

Diagnostics Installed

<u>Magnetic Probes</u> ~ 70 Langmuir Probes ~ 60 **Spectroscopy:** Visible, VUV, IR, Imaging: 2 Soft X-ray Arrays: 2 Hard X-ray detectors: 3 Microwave: Interferometer: 6 channel **Reflectometer: 1 Channel Bolometer: 2 Arrays** ECE: 12 channel

Operation Preparation before 1st Plasma in ADITYA – U

Comparison of Recycling fluxes in ADITYA and ADITYA-U

3D Simulation using EMC3-EIRENE Model

Recycling flux

: HIGH

: LOW

 $D [m^2 s^{-1}]$

ADITYA-U DISCHARGES

n-5×10¹⁷

Rina Limite Block limiter

Typical Initial Discharges of ADITYA-U

Comparison of Discharge initiation in ADITYA and ADITYA-U

Regular Discharges of ADITYA-U

Runaway Electrons:

✓ Generation, Transport, Mitigation using SMBI and Gas-puff etc.

MHD studies:

- ✓ Modulation of Frequencies of MHD modes using multiple periodic gas puffs
- ✓ Presence and Absence of Harmonics of MHD modes

Radiative Improved Modes using Neon gas puff:

Current Filaments during Disruptions:

Neutral Particle Penetration:

✓ Radial profiles of Neutrals

Runaway Electrons:

✓ Generation, Transport, Mitigation using SMBI and Gas-puff etc.
MHD studies:

✓ Modulation of Frequencies of MHD modes using multiple periodic gas puffs

✓ Presence and Absence of Harmonics of MHD modes

Radiative Improved Modes using Ne gas puff:

Current Filaments during Disruptions:

Neutral Particle Penetration:

✓ Radial profiles of Neutrals

濑

14

Operational control over RE content in ADITYA-U

ADITYA-U discharges (#31099, Black) and (#32086, Red)

Discharges with and without REs

Significant RE flux when the Chord averaged density < 1.5 x 10¹⁹ m⁻³ (RED)

Significant reduction in RE <u>flux when the Chord</u> <u>averaged density ></u> <u>2.0 x 10¹⁹ m⁻³ (BLACK)</u>

 Limiter hard X-Rays detected using Nal (3 inch diameter) lead shielded scintillator detector

Sawteeth generated REs and their transport

Correlated HXR bursts with each sawteeth crash suggests that sawtooth crash generates REs E_{swc} ~ 20 V m⁻¹ > E_D ~ 16 V m⁻¹

Induced electric field due to sawtooth crash > critical electric field required for thermal electrons to runway.

Overlap of m = 2 and m = 3 islands facilitates faster RE loss

Islands with good surfaces in between delay the RE loss.

[Harshita Raj et al 2018 Nucl. Fusion 58 076004]

Runaway Electrons mitigation by SMBI in ADITYA-U

Experiments in ADITYA Upgrade Tokamak

Runaway Electrons:

✓ Generation, Transport, Mitigation using SMBI and Gas-puff etc.

MHD studies:

✓ Modulation of Frequencies of MHD modes using multiple periodic gas puffs

✓ Presence and Absence of Harmonics of MHD modes

Radiative Improved Modes using Ne gas puff:

Current Filaments during Disruptions:

Neutral Particle Penetration:

✓ Radial profiles of Neutrals

Multiple Harmonics of Drift-Tearing Modes

Controlling MHD Mode Rotation frequency by Periodic Gas Puffs

Runaway Electrons:

✓ Generation, Transport, Mitigation using SMBI and Gas-puff etc.

MHD studies:

- ✓ Modulation of Frequencies of MHD modes using multiple periodic gas puffs
- ✓ Presence and Absence of Harmonics of MHD modes

Radiative Improved Modes using Ne gas puff:

Current Filaments during Disruptions:

Neutral Particle Penetration:

✓ Radial profiles of Neutrals

Radiative Improved Modes in ADITYA-U

Runaway Electrons:

✓ Generation, Transport, Mitigation using SMBI and Gas-puff etc.

MHD studies:

- ✓ Modulation of Frequencies of MHD modes using multiple periodic gas puffs
- ✓ Presence and Absence of Harmonics of MHD modes

Radiative Improved Modes using Ne gas puff:

Current Filaments during Disruptions:

Neutral Particle Penetration:

✓ Radial profiles of Neutrals

Thick filaments during plasma disruption in ADITYA-U

Large number of filaments during Disruption

[Banerjee et al. POP 24 102513 2017]

Estimation of Number of Filaments

Interchange turbulence in the edge region of tokamak

Poloidal wave number k_y of the mode with highest growth rate is given by:

$$k_{y0} = \left(\frac{\sigma}{D+\nu}\right)^1$$

Fast camera images of shot #30878

With reduced σ (conductivity) and sharply increased D (diffusivity),

 k_{v0} will be smaller during the quench phase, leading to observation of several filaments

Theory conforms well with experimentally observed number of filaments

[Poster by S. Banerjee et al, EX /P4-4]

Runaway Electrons:

✓ Generation, Transport, Mitigation using SMBI and Gas-puff etc.

MHD studies:

Modulation of Frequencies of MHD modes using multiple periodic gas puffs
 Presence and Absence of Harmonics of MHD modes

Radiative Improved Modes using Ne gas puff:

Current Filaments during Disruptions:

Neutral Particle Penetration:

✓ Radial profiles of Neutrals

Ŵ

25

Neutral particle penetration using DEGAS2 code

SUMMARY

ADITYA-U tokamak:

- ✓ The ADITYA-U tokamak is operational from December 2016.
- \checkmark Upgradation include a new vessel, divertor coils, toroidal limiters etc.
- ✓ Improved Error fields facilitates breakdown in more than 2000 discharges without a single failure. Successful development and implementation of real time position control.
- ✓ Achieved wider pressure window and significant reduction in runaway electrons (REs)

Experiments carried out in ADITYA-U:

- ✓ Presence of multiple harmonics of drift tearing mode seems to be related to the presence and absence of REs.
- \checkmark A novel technique of controlling MHD rotation frequency by varying ω^* using periodic gas puffs.
- ✓ Significant reduction of REs by application of SMBI. The reduction depends upon the rotation frequency variation due to SMBI
- ✓ Radiative improved modes with Neon gas injection with ~50 % of edge radiated power. The core toroidal rotation changes sign after the Ne puff.

Shape Plasma Experiments will commence soon

Thank you!

Acknowledgement: I would like to thank all the Co-authors and contributors from ADITYA –U Team.

Posters from ADITYA-U: [B. Sahoo et al, Phys. Plasmas, 24, 082505 (2017)] [Poster by Yogesh Jain et al, FIP/P3-53] [R.L. Tanna et al, 2018 Plasma Sci. Technol. 20 074002] [Poster by Suman Aich et al, EX/P4-31] [Harshita Raj et al 2018 Nucl. Fusion 58 076004] [Poster by K.A. Jadeja et al, FIP/P3-64] [S. Banerjee et al. POP 24 102513 2017] [Poster by B. Sahoo et al, TH/P7-9] [Poster by N. Bisai et al, TH/P6-23] [Poster by D. Sharma et al, TH/P7-6] [Poster by M.B. Chowdhuri EX /P4-5] [Poster by R. Kumar et al, FIP/P3-58] [Poster by G. Shukla, EX/ P4-10] [Poster by S. Banerjee et al, EX/P4-4] [Poster by Ritu Dey et. al. TH /P8-5] [Talk by Harshita Raj, EX/11-1]