

Developing Steady State ELM-absent H-Mode scenarios with Advanced Divertor Configuration in EAST tokamak

G. Calabrò, B.J. Xiao, J.G. Li, Z.P. Luo, Q.P. Yuan, L. Wang, K. Wu, R. Albanese, R. Ambrosino, A. Castaldo, F. Crisanti, G. De Tommasi, X.Z. Gong, Y. Huang, P. Innocente, H.Q. Liu, R. Lombroni, C. Meineri, A.Mele, S. Minucci, A. Pironti, J.P. Qian, G. Ramogida, <u>N. Vianello</u>, T. Zhang and EAST Team

24 October 2016

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

 \checkmark Context and Motivations

- \checkmark Context and Motivations
- ✓ 2 Nearby Divertor Nulls (2-NDN) properties

Outline

- \checkmark Context and Motivations
- ✓ 2 Nearby Divertor Nulls (2-NDN) properties
- \checkmark Long pulse H-Mode ELMs-absent scenario

Outline

- \checkmark Context and Motivations
- ✓ 2 Nearby Divertor Nulls (2-NDN) properties
- \checkmark Long pulse H-Mode ELMs-absent scenario
- $\checkmark~$ (New) shape controller and next steps

Outline

- \checkmark Context and Motivations
- ✓ 2 Nearby Divertor Nulls (2-NDN) properties
- \checkmark Long pulse H-Mode ELMs-absent scenario
- $\checkmark~$ (New) shape controller and next steps
- ✓ Conclusions

Context and motivations

x_

- ✓ **EAST** (R/a = 1.85/0.45 m) is a fully superconducting tokamak with upper ITER-like, water cooled W monoblock divertor
 - / I4 PFs 14kA/turn & 12 PSs, DN/SN conf.s, far from the plasma (DEMO-like)
- ✓ Not optimized for SnowFlake (SF) like conf. ⇒ can be realized only at low IP
- \checkmark Higher I_p requires coils current exceed limit

Alternative divertor configuration, named 2-NDN characterized by two-first order X-points \Rightarrow can easily achieved and controlled on EAST (Calabro *et al.* 2015)

2-NDN divertor properties

Due to the location of PF coils and target plates the 2nd x-point could be moved around from the 1st one to form a magnetic configuration that features either a contracting or flaring geometry near the plate (the latter being a feature of a single-legged X-divertor)

Case	L	Flux expansion at outer SP	Distances x ₁ -x ₂
Single Null (SN) 2-NDN far ($l_{ranse} \approx 480$ kA)	95 103.5	2.1 9.84	0.92
2-NDN close ($I_{p,max} \approx 400$ kA)	129.7	26.59	0.45
Modeling by CREATE-NL tools			

H-Mode: (Lower) SN vs (Lower) 2-NDN

- \checkmark Flux expansion of (L)2-NDN at outer strike point is a factor \sim 3 w.r.t. (L)SN
- ✓ IR measurements point out a peak heat load reduction for (L)2-NDN of a factor ~ 1.5 w.rt. (L)SN
- ✓ SOLPS (Si et al. 2016) and EDGE2D-Eirene modeling prediction confirmed (Viola et al. 2017) N.Vianello | Ahmedabad | 27th-IAEA-FEC-Conference | 24 October 2016 | 4

H-mode ELMs-absent Upper 2-NDN

✓ Flux expansion of (U)2-NDN at outer strike point is factor 3 w.r. to (U)SN
✓ Core and edge Radiation almost constant, no impurity accumulation is observed
✓ ELMy absent ⇒ which mechanism characterizes this behavior?

H-mode ELMs-absent Upper 2-NDN

✓ Flux expansion of (U)2-NDN at outer strike point is factor 3 w.r. to (U)SN
✓ Core and edge Radiation almost constant, no impurity accumulation is observed
✓ ELMy absent ⇒ which mechanism characterizes this behavior?

Long pulse (\sim 21 s) non-inductive 2-NDN

- $\checkmark~H_{98}\sim 1.1$
- \checkmark n_e ~ 2.8 10¹⁹m⁻³
- $\checkmark \beta_p \sim 2.1$
- $\label{eq:lp} \begin{array}{l} \checkmark \quad I_p \sim 250 \text{ kA,} \\ B_T = 2.4 \text{T} \end{array}$
- \checkmark P_{heat} \approx 6.2 MW
- $\checkmark~$ Steady state
- ✓ Non-inductive
- ✓ ITER like z stabilizer + ISOFLUX shape controller

Looking at (U)2-NDN edge behavior

- ✓ Stable density is maintained in whole discharge (MARFE between 3.3s-3.4s)
- $\checkmark\,$ Strong pedestal gradient build up at the onset of H-Mode

Comparison of (U)SN vs (U2-NDN)

Comparison of (U)SN vs (U2-NDN)

Investigation of ELMs behavior in 2-NDN

- $\checkmark\,$ Absence of ELMs activities in the 2-NDN scenarios analyzed in terms of physics that connects downstream and upstream properties
- ✓ Recent experiments, both in L mode (Carralero et al. 2015), s well as in H mode (Carralero et al. 2017), have confirmed that the theoretical (Krasheninnikov et al. 2008) prediction that increasing the downstream local collisionality affects the filaments behavior driven by interchange instabilities
- ✓ When the normalized divertor parameter Λ_{div} exceed the threshold of I, a **shoulder** is formed in the upstream SOL gradient density, as a consequence of the transition from the sheath limited regime to the inertial regimes and to an enhancement of the perpendicular transport

- $\begin{array}{l} \checkmark \quad \Lambda_{\text{div}} = \frac{L_{\parallel} \nu_{\text{el}} \Omega_i}{c_{\text{s}} \Omega_{\text{e}}} \\ \checkmark \quad \text{Target profile changes between USN and (U)2-NDN only in the near not} \end{array}$ in the far SOL. Λ_{div} increases because of increase of L_{II} from 50 to 64 m N.Vianello | Ahmedabad | 27th-IAEA-FEC-Conference | 24 October 2016 | 10

- $\begin{array}{l} \checkmark \quad \Lambda_{\text{div}} = \frac{L_{\parallel} \nu_{\text{el}} \Omega_i}{c_s \Omega_e} \\ \checkmark \quad \Lambda_{\text{div}} \text{ increase by flux expansion inefficient in modifying upstream profile} \end{array}$ and filamentary transport in TCV (Vianello et al. 2017) N.Vianello | Ahmedabad | 27th-IAEA-FEC-Conference | 24 October 2016 | 10

- $\begin{array}{l} \checkmark \quad \Lambda_{\text{div}} = \frac{L_{||} \nu_{ei} \Omega_i}{c_s \Omega_e} \\ \checkmark \quad \text{Possible other mechanism is an enhancement of filamentary transport in} \end{array}$ the divertor region (as in TCV-SF- (Walkden et al. 2018)) N.Vianello | Ahmedabad | 27th-IAEA-FEC-Conference | 24 October 2016 | 10

- $\begin{array}{l} \checkmark \quad \Lambda_{\text{div}} = \frac{L_{\parallel} \nu_{\text{el}} \Omega_i}{c_{\text{s}} \Omega_{\text{e}}} \\ \checkmark \quad \text{However also other mechanisms as the Edge Coherent Mode (ECM)} \end{array}$ already invoked for EAST (Hu et al. 2015) may play a role N.Vianello | Ahmedabad | 27th-IAEA-FEC-Conference | 24 October 2016 | 10

Recent upgrade on shape controller

- $\checkmark\,$ Recent progress on flexible and robust MIMO (JET/XSC-like) controller $\Rightarrow\,$ similar (U)SN and (U)2-NDN shapes
- \checkmark Further efforts will be devoted to actively control the 2nd x-point

Recent upgrade on shape controller

- $\checkmark\,$ Recent progress on flexible and robust MIMO (JET/XSC-like) controller $\Rightarrow\,$ similar (U)SN and (U)2-NDN shapes
- $\checkmark\,$ Further efforts will be devoted to actively control the 2nd x-point

Lower divertor upgrade (FY 2019)

Bottom $C \rightarrow W$ upgrade

- $\checkmark~$ Power exhaust: 10 MW/m²
- $\checkmark~$ Strong pumping, low W sputtering
- $\checkmark~$ 2 new divertor coils \rightarrow more flexible shaping

Current challenges of lower divertor

- ✓ **C tiles**: 2 MW/m², high retention
- Limited pumping capability

[Calabrò SOFT 2018]

Conclusions

- ✓ Achieved (reproducible) 2-NDN fully non-inductive steady-state H-mode discharges up to 21s in EAST tokamak
 - \checkmark Observed a peak heat load reduction of factor \sim 1.5
- ✓ ELMs activity quite quiescent \rightarrow a possible non-linear interaction between the downstream magnetic topology and the upstream kinetic gradients is under investigation
 - ${}^{\sim}$ Progress on shape controller \rightarrow better comparison with SN configuration
 - $^\prime$ upgrade to the lower divertor is currently being planned for EAST, including 2 divertor coils \rightarrow more flexible shaping