Viability of Wide Pedestal QH-Mode for Burning Plasma Operation

by

D. R. Ernst

with K.H. Burrell², C. C. Petty², K. Barada³, T. L. Rhodes³, G. Wang,³ S. Haskey⁴, C. Chrystal², B. A. Grierson⁴, N. Logan⁴, C. Paz-Soldan², Q. Pan¹, P. C. Crandall³, Xi Chen², T. M. Wilks¹, M. E. Austin⁶, T. Carlstrom², M. Yoshida,⁵ T. Osborne², L. Zeng³ and the DIII-D Team

¹MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA
 ²General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA
 ³University of California Los Angeles, PO Box 957099, Los Angeles, CA 90095-7099, USA
 ⁴Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451, USA
 ⁵National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan
 ⁶Institute for Fusion Studies, University of Texas, Austin, TX, 78712, USA

Presented at the 27th IAEA Fusion Energy Conference Gandhinagar, India

October 22 - 27, 2018 Email: dernst@psfc.mit.edu

Oral 11:05 AM EX/2-2 Pedestal & ELM Optimization (24 Oct 2018, 10:45-12:30) Poster (24 Oct 2018, 14:00-18:45)

Rapid Progress Suggests Wide Pedestal QH-Mode is Attractive Scenario for Burning Plasma Operation in ITER

- New stationary ELM-stable regime in DIII-D
- QH-Mode transitions to Wide Pedestal at low E_r shear
 - Pedestal pressure 160%
 - Pedestal width 165%
 - Global confinement time 140%
- Zero injected torque throughout discharge
- Sustained with up to 77% ECH power
 - Confinement *improves* with electron heating
 - Promising for burning plasma:
 α-particles heat electrons

- Wide Pedestal QH-Mode in LSN Shape
 - Lower Z_{eff} implicates sources

Transition to Wide Pedestal QH-Mode First Discovered While Ramping Counter-NBI Torque Toward Zero

- Reduced Pedestal E_r shear
- Less drive for Edge Harmonic Oscillations (EHO) which regulate standard QH-Mode
 - EHO replaced by shorter wavelength broadband fluctuations
 - Transition to 60% higher and 65% wider pedestal
 - Transport-limited pedestal no ELMs
- Core confinement improves with higher pedestal

Burrell et al., Phys. Plasmas (2016) Chen et al., Nucl. Fusion (2017)

Creation of Wide Pedestal QH-Mode does not Require Injected NBI Torque

NBI Torque to Initiate and Sustain Wide Pedestal QH-Mode now Reduced to ~Zero Net Torque Injected Throughout

- New zero torque startup
- Replace NBI counter torque with
 Neoclassical Toroidal Viscous (NTV) torque
 - Use n=3 non-axisymmetric magnetic fields
 - NTV torque prevents early locked modes, tailor to avoid n=2 NTM
- Same or better wide pedestal QH-Mode performance with zero injected NBI torque

Burrell et al. (2018)

Measured Intrinsic Torque Dominates and Matches Direction of Rotation

With ~zero injected NBI torque

- Measured both carbon and deuterium toroidal rotation profiles
- Intrinsic torque density measured using beam torque modulation in similar discharge
 - Includes thermal ion loss (co-)
 - Edge NTV not yet included (counter-)
- Local beam torque density opposite rotation over most of profile

Wide-Pedestal QH-mode Operation has been Extended to LSN and USN Shapes and a Wide Range of NBI Torque

- Wide pedestal transition seen in range of discharge shapes over wide range of NBI torque
 - Transition not seen yet for USN with dRsep ≥ 2 cm
- Shape and torque ramps in wide pedestal conditions used to broaden parameter space further
- Range of wide pedestal accessible torques exceeds ITER equivalent range

Approaching Dominant Electron Heated Wide Pedestal QH-Mode using Off-Axis ECH

In Wide Pedestal QH-Mode, Confinement Improves further with Increasing Auxiliary Power

- H_{98y2} ~ 1.6 increases with power
- Global energy confinement time τ_E does not degrade with power as in usual H-Mode scaling
- These scans utilize NBI heating at zero injected torque

Electron Heating Improves Wide Pedestal QH-Mode Confinement, Unlike any Other DIII-D Regime — as $T_e/T_i \rightarrow 1$ at ITER Collisionality

Off-axis ECH at ρ =0.4

- τ_E increased 60% with
 1/3 ECH power
 - Pedestal E_r well widens/deepens
- With more ECH, T_e fluctuations intensify for ρ=0.5-0.7
 - T_e profile stiffens
 - Ion channel degrades
 - Suggests T_e/T_i threshold crossed

With ECH off-axis, Confinement Initially Improves but Shows Less Improvement at Higher ECH Power Fractions

 $(Z_{eff} \sim 4.5 \text{ shows little change})$

Fourier Analysis of Modulated ECH Shows Electron Thermal Diffusivity Increases Monotonically with Electron Temperature Gradient R/L_{Te}

Off-axis ECH at ρ =0.4

- At highest ECH power fraction, stiffness with respect to R/L_{Te} decreases
- Consistent with crossing threshold in T_e/T_i or collisionality

²J. C. DeBoo, C. C. Petty et al Phys. Plasmas, **19**, 082518 (2012)

Dominant Electron Heated Wide Pedestal QH-Mode using On-Axis ECH

Low Torque, Wide-Pedestal QH-mode Sustained with 77% ECH Power

On-axis ECH replacing beam power Confinement not degraded with ECH **Central Temperatures** (MW) 12 ı_{e0} (ke∖ P_{tot} P_{ECH} 6 Ti∩ (keV) 200 Vide Pedestal QH-Mode **Electron Pedestal Width (cm) Electron Pedestal Pressure (kPa)** 100 Divertor D_{α} Light **Energy Confinement Time (ms)** 174675 3 5 Time (s) Time (s)

- Recovers from loss of beam core fueling
- New core T_e ITB forms without reverse shear

Ernst EX/2-2/IAEA FEC 2018/October 2018

With ECH on-axis, New ITB Forms in Electron Temperature Despite Monotonic q-profile, Further Improving Confinement with ECH

 Move one gyrotron per discharge from ρ=0.4 → ρ=0.1

ECH location scan

 Carbon toroidal velocity hollows in ITB

Connected to
 e⁻ channel

n = 3 NTV
 torque:
 electron root?

Ernst EX/2-2/IAEA FEC 2018/October 2018

Role of Electron Heat Pinch Identified in T_e ITB Formation through ECH Location Scan and Fourier Analysis of Modulated ECH

ECH location scan

Electron Heat Pinch increases R/L_{Te} by factor 2.4

Ernst EX/2-2/IAEA FEC 2018/October 2018

Current Status of Wide Pedestal QH-Mode as Candidate Burning Plasma Regime for ITER Baseline Scenario

Demonstrated	Work in	Progress	Not Yet Addressed
No ELMS	Reduce q ₉₅		Radiative divertor
No reliance on NBI torque, fueling; zero torque throughout, torques spanning ITER equiv. range	Reduce high Z _{eff} (DIII-D specific sources)		Wall conditioning requirements
Dominant Electron Heating (77%) with Improved $\tau_{\rm E}$	Impurity confinement studies		
H_{98y2} ~ 1.6 1 with power, β_N ~ 2.3			
LSN Shape		• Wide pedestal QH-Mode: low ExB shear – turbulence limited pedestal • ITER at low ρ_*^{t} , where $E_r \simeq \nabla p/en$: $\frac{\omega_{\rm E \times B}}{\gamma} \propto \left(\frac{a}{w_{\rm ped}}\right) \rho_*$ t Kotschenreuther et al. NF (2017)	
$T_e \sim T_i$			
Very low core MHD			
ITER collisionality			
17 NATIONAL FUSION FACILITY	Ernst EX/2-2/IAEA FEC 20	018/October 2018	TIPSFC Plasma Science and Fusion Center

Backup slides

Preliminary Results for Impurity Transport in Wide-pedestal QH-Mode

- Impurity transport studied by injecting pulses of Aluminum using laser blow-off system
- WP QH has typical H-Mode ratio of particle to energy confinement time $\tau_P/\tau_E \sim 2-3$
- Unlike ELMy H-mode, Wide-pedestal QH-mode does not have inward impurity pinch

Impurity Concentrations Due (in part) to Stronger Sources of Carbon

- Balanced double null (DN) configurations tend to have higher Z_{eff}
- Counter NBI orbit losses also increase carbon influx, but counter NBI is not needed
- Expect lower Z_{eff} Wide Pedestal QH-Mode without NBI and with ITERrelevant Lower Single Null (LSN) shape
- ECH does not appear to lower Z_{eff}

- Wide Pedestal QH-Mode in LSN Shape
 - Z_{eff} reduced by 23% going from
 Double Null to Lower Single Null

Use Beam Torque Modulation at Constant Power to Measure Intrinsic Torque

- Vary torque by exchanging co- and counter- beams, keeping total power constant
- Mean counter-current NBI torque 0.9 Nm
 - Modulated in 400 ms duration steps ± 0.2 Nm
- TRANSP with 250,000 particles to compute beam torque
 - Use reflectometer density profile with high time resolution
- Determine momentum confinement time at each radius;
 "peel the onion" to infer "intrinsic" torque density profile¹

