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HL-2A

•R: 1.65 m
•a: 0.40 m

•Bt: 1.2~2.7 T

• Ip: 150 ~ 480 kA
•ne: 1.0 ~ 6.0 x 1019 m-3

•Te: 1.5 ~ 5.0 keV

•Ti: 0.5 ~ 3.5 keV

NBI1

NBI2

SOUTH

NORTH Newly developed  diagnostics

• Beam Emission Spectroscopy (BES) 

• Phase Contrast Imaging (PCI) 

• He Gas-Puss-Imaging (He-GPI)

• Coherence Imaging Spectroscopy (CIS) 

• CO2 laser collective Thomson scattering system 

Plan view

Heating  systems:

• ECRH/ECCD: 5 MW 

• NBI (tangential):  3 MW

• LHCD: 2 MW (PAM, 2 s)
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HL-2A

◆ Mission: key physics for advanced tokamaks (e.g. ITER) 

• Present stage:

– H-mode physics: L-H transition, edge turbulence & transport

– MHD control: ELM, EPM, Disruption control

• Next plan: 

– real time control of MHD (NTM, Disruption,…) 

– development of advanced ELM control techniques

– multi-scale physics

◆ Current operation regime 

• High beta： 𝛽𝑁 ≥ 2.5, 𝛽𝑝~2.0

• Good confinement: H98 ~ 1.2

• Bootstrap current fraction: >30%

• Full  non-inductive operation: Vloop ~ 0

Mission of the HL-2A
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HL-2A

Fuelling and MHD Control Systems

• Supersonic molecular beam injection (SMBI):  

– new skimmer, 1kHz,Max throughput :1022

– H2,D2, He,Ar…,with pressure: 0.1-5 MPa 

• Laser blow-off (LBO): 

– Al, Fe, Ti, W,… 

– multi-pulses frequency: 30 Hz

• Shattered pellet injection(SPI)：

– diameter: 3.5 mm, length: ~4.5 mm

– Velocity: 0.2 to 0.5 km/s

• Pellet injection: 

– diameter: 1-1.2 mm; 0.1-0.5 km/s

• Gas Puffing: ~0.18 MPa

• Massive gas injection (MGI): max throughput :1023

SMBI injector with higher fueling 

efficiency

SPI system 

LBO system 
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HL-2A

Main diagnostics on the HL-2A

◆Diagnostics for transport study
• Te profile: Thomson Scattering, ECE

• Ti profile:  CXRS, CP-NPA

• ne profile: Thomson Scattering, Interferometer, Reflectometer

• rotation :  CXRS, Doppler reflectometer, Probe array

• q profile:  MSE, Polarimeter

◆Diagnostics for plasma fluctuations
• ෥𝐧𝒆 : Interferometers, Doppler reflectometers, Reflectometer, BES

• ෩𝐓𝒆 : ECE, ECEI, Soft-x-array, Electrostatic probe

• : Mirnov coils

◆Diagnostics for fast ions
• Fast ion distribution: FIDA, CP-NPA ,CXRS 

• Fast ion loss: Fast ion loss probe, Fission chamber, neutron rate

B
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HL-2A

ELM Mitigation by LHCD

• ELM mitigation with LHCD and significantly reduction of the divertor heat load.

• A plausible mechanism : LHCD → Edge velocity shear decrease → Turbulence radial 

spectral shift → Turbulence amplitude →  ELM mitigation

Xiao(SWIP), Zou(CEA), et al., EX/7-4

Mechanism: LHCD → ExB shear decrease → 𝑘𝑟 shift → ෥𝒏𝒆 increase →  ELM mitigation

Pedestal turbulence intensity
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HL-2A

 E×B Velocity shear:   severe reduction after LBO.

 Pedestal turbulence: Intensity enhanced.

radial wavenumber spectral shift.

 ELM Mitigation

Xiao(SWIP), Zou(CEA), et al., EX/7-4
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ELM Mitigation by LBO Fe impurity seeding



HL-2A

Mechanism of ELM Mitigation by LHCD/LBO

Theoretical results confirm  enhancement of turbulence by shift of radial wavenumber 

Theoretical results

Q: heat source

U: reduction value of ExB shear

𝑘𝑥:Averaged radial wavenumber

𝐼𝞥:Turbulence intensity

• Theory model predicts the turbulence enhancement by shift of radial wavenumber 

• LHCD/LBO       ExB shear decrease 𝑘𝑟 shift     ෥𝒏𝒆 increase     ELM mitigation

Xiao(SWIP), Zou(CEA), et al., EX/7-4
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HL-2A

• Mixture SMBI mitigates ELMs & significantly reduce divertor heat flux

• Impurity ions and change of pedestal profiles lead to  ELMs mitigation

Divertor heat flux near the striking point

Zhong et al., EX/P5-3
D2 +Ne(30% ) SMBI strongly mitigates ELMs

ELM mitigation with D2+Ne SMBI

Mitigate ELMs

ELM 

frequency 

ratio

Improve confinement
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HL-2A

ELM suppressed by LBO-seeded impurity

LBO-seeded impurity measured by camera and bolometer

• ELM suppressed by LBO seeded impurity (W) 

• In suppression phase, a new mode (Harmonic 

Coherent Mode, HCM) was found. 

Zhang, Mazon, et al.,  NF (2018)

A new ELM suppression technique: LBO-seeded impurity
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ELM control by LBO W impurity seeding



HL-2A

Interaction between plasma flows and turbulence

• GAM facilitates the L-I transition with energy transfer from GAM to LCO. 

• Increased mean E×B flow shear promotes the L-I and I-H transitions .

• The increment of |𝜕𝐸𝑟/𝜕𝑟| comes from the ion diamagnetic component 𝜕𝐸𝑟
𝛻𝑃𝑖/𝜕𝑟

𝜕𝐸𝑟
𝜕𝑟

=
𝜕𝐸𝑟

𝛻𝑃𝑖

𝜕𝑟
−
𝜕𝐸𝑟

𝜐𝜃𝑖

𝜕𝑟
+
𝜕𝐸𝑟

𝜐𝜙𝑖

𝜕𝑟

Liang et al.,  PoP 2017

Pressure gradient → E×B flow shear increase → L-I&I-H transition
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HL-2A

Nonlinear coupling in pedestal turbulence  

• CM: f=30-70 kHz, m=20-24,localized in pedestal (2~3cm)

• Inward particle flux induced by the coherent mode 

• CM generation mechanism: nonlinear coupling of small scale turbulence    

Cheng et al., AAPPS-DPP, 2017
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HL-2A
16

• Nonlinear coupling of turbulence → localized mode → streamer 

• Streamer: life time 10 ~ 20 us, size: ~10 cm * 5 cm

• Streamer provides a fast transport channel connected the edge to core plasmas

First observation of streamer in H mode 

Cheng, EX/P5-6
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HL-2A

• (1/1) fishbone plays an important role in the 

formation and sustainment of ITB at low central 

shear;

• Formation of ITB in H mode plasma 

• Turbulence suppressed during ITB sustainment

ITB  in H-mode plasma

ITB

Liu et al., EX/P5-28

HL-2A # 29710

ELMy

Fishbone → fast ion redistribution→ change of q shear → affect transport → ITB formation

17



HL-2A18

RS and Turbulent Generation of Edge Poloidal Flows 

T. Long, P.H. Diamond 

et al. EX/P5-5

• Reynold stress and particle flux PDF at 1cm inside LCFS 

show elevated kurtosis, which indicates fat tails; 

• Deviation from Gaussian suggests the consideration of:

1. Validity of quasilinear models of edge turbulence transport

2. Phase correlations and dynamics

➢ Significant deviation of mean poloidal flow from

neoclassical due to turbulent stresses. Shift ↑ with power.
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HL-2A

Stabilization of m/n=1/1 fishbone by ECRH

Chen et al., EX/P5-20&NF, 2018

• Mode stability depends on both the PECRH and deposition location (𝜌𝑑)

• Fishbone suppressed when PECRH exceeds a threshold. 

Mechanism: ECRH → Te increase → resistivity decrease → resistive fishbone stabilized

ECRH

growth rate

Mode 

frequency

Reynolds number 

Theoretical resultScan 𝜌𝑑, fixed PECRH=1 MW Scan PECRH ,fixed 𝜌𝑑 = 0.42

PECRH = 0.37 MW 

PECRH = 0.55 MW 

PECRH = 0.60 MW 

𝜌𝑑 = 0.02

𝜌𝑑 = 0.42

𝜌𝑑 = 0.66

fishbone

𝑑𝐵𝜃/𝑑𝑡 + 40
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HL-2A

Wave-particle resonance converts unstable TM to  fishbone-like mode with 

frequency chirping and amplitude bursting

Excitation of m/n=2/1  fishbone by fast ions

Chen et al., EX/P5-20

ECEI

Resonant interactions between fast ions and m/n=2/1 TM were observed
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HL-2A

Co-passing energetic-ions drive the m/n=2/1  fishbone-like mode 

• Simulated mode structure and mode 

frequency chirping consistent with 

the measurements

• Resonance condition: ωφ−2ωθ−ω = 0, 

and co-passing energetic-ions are 

responsible for the mode drive

with EP

without EP

Mode structure

Resonance condition

M3D-K modelling collaborates with Zhu (DLUT)

Co-passing energetic-ions play a key role in the fishbone-like mode drive 
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HL-2A

➢ Mode propagates in electron diamagnetic drift directions

➢ TAE  locates in the core(ρ=0.35), with n=4, m=4 and 5

➢ fTAE=224 kHz by theory close to experimental results (235 kHz);

Yu et al., PoP, 2018 

TAEs driven by energetic electrons

Theory predicted 

mode structure

High-frequency TAE driven by energetic electrons was observed

23



HL-2A
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Interaction among island, flow and turbulence

Turbulence reduced inside island while elevated at island 

boundary, consistent with gradient-driven turbulence

Perpendicular flow, flow fluctuation and density 

fluctuation were modulated by island rotation.

Jiang et al., NF, 2018 

Pressure gradient plays a key role in modulation of turbulence by TM 

(@ outer bdry of island)

Island    width
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HL-2A

Localized modulation of ෩𝑻𝒆 by large island

An island-width threshold (6.6 cm) was found 

in the turbulence modulation.
Jiang et al., EX/P5-4

Modulation of ෩𝑻𝒆 by island only appears in the 

inner half island (marked by green dots in (a) ) 

Large 𝛻𝑇𝑒 difference between X- and 

O-point in inner half island
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HL-2A

Summary of research highlights

➢ ELM control techniques were developed:

• LHCD were achieved

• LBO seeded impurity,

• impurity mixture SMBI

➢ In ELM phase: streamer induces a transport channel from core to edge within a

few microsecond

➢ Control of resistive fishbone by ECRH realized on the HL-2A. Wave-particle 

resonance converts unstable TM to  fishbone-like  mode.

➢ Found island-width threshold for turbulence modulation. Modulation of ෩𝑻𝒆 by 

island only appears in  inner half island.
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HL-2A

Outlook
◆ HL-2M

• Mission: In support of ITER & CFETR: high 

performance, high beta, and high bootstrap 

current plasma; advanced divertor

configuration (snowflake, tripod), PWI at high 

heat flux, etc.

• Parameters: R=1.78 m, a=0.65 m, Bt=2.2 T, 

Ip=2.5 MA, Heating~ 25 MW, triangularity=0.5, 

elongation=1.8-2.0

• Status: Start the assembling before the 

end of this year.

HL-2M tokamak
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HL-2A

➢ OV/5-1 Xu: Overview of HL-2A recent experiment

➢ EX/P5-20 Chen: Suppression and destabilization of ion fishbone activities on HL-2A

➢ EX/P5-28 Liu: Development of the q=1 Advanced tokamak Scenarios in HL-2A 

➢ EX/P5-6 Cheng: Pedestal dynamics in inter-ELM phase on HL-2A tokamak

➢ EX/P5-4 Jiang: Localized modulation of turbulence by magnetic islands on HL-2A tokamak

➢ EX/P5-19 Shi: Energetic-ion Driven Toroidal and Global Alfvén Eigenmodes on HL-2A

➢ EX/P5-3 Zhong: Plasma confinement and pedestal dynamics responses to impurity seeding in HL-2A H-

mode plasmas

➢ EX/P5-8 Zhang: Effect of LBO-seeded Impurity on ELMs in the HL-2A tokamak

➢ EX/P5-12 Xu: Experimental evaluation of electron energy probility function and sheath potential coefficient of 

HL-2A

➢ EX/7-4 Xiao: ELM Control Physics with Impurity Seeding and LHCD in the HL-2A Tokamak

Welcome to the poster session for further discussions! 

List of HL-2A Contributions
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HL-2A

List of SWIP Contributions
➢ OV/5-1 M.Xu : Overview of HL-2A recent experiments

➢ FIP/2-1 J. Chen:Progress in Developing ITER and DEMO First Wall Technologies at SWIP

➢ FIP/1-6 X. Wang: Current Design and R&D Progress of CN HCCB TBS

➢ EX/7-4 G. L. Xiao: ELM Control Physics with Impurity Seeding and LHCD in the HL-2A Tokamak

➢ EX/P5-20 W. Chen: Suppression and destabilization of ion fishbone activities on HL-2A

➢ EX/P5-28 Y. Liu: Development of the q=1 Advanced tokamak Scenarios in HL-2A 

➢ EX/P5-6 J. Cheng: Pedestal dynamics in inter-ELM phase on HL-2A tokamak

➢ EX/P5-4 M. Jiang: Localized modulation of turbulence by magnetic islands on HL-2A tokamak

➢ EX/P5-19 P. W. Shi: Energetic-ion Driven Toroidal and Global Alfvén Eigenmodes on HL-2A

➢ EX/P5-3 W. Z. Zhong: Plasma confinement and pedestal dynamics responses to impurity seeding in HL-2A H-mode plasmas

➢ EX/P5-8 Y. P. Zhang: Effect of LBO-seeded Impurity on ELMs in the HL-2A tokamak

➢ EX/P5-12 M. Xu: Experimental evaluation of electron energy probility function and sheath potential coefficient of HL-2A

➢ FIP/P1-38 L. Cai: Preliminary development on a conceptual first wall for DEMO

➢ TH/P2-3 H. He: Simulation of Toroidicity-Induced Alfven Eignenmode Excited by Energetic Ions in HL-2A Tokamak Plasmas

➢ FIP/P3-22 H. Liao: Recent progress of R&D activities on Chinese reduced activation ferritic/martensitic steel (CLF-1)

➢ FIP/P3-11 Z. Xu: Splashing Effect of Liquid Metal Divertor Due to ELMs Crashing

➢ EX/P5-15 X. Q. Ji: Nonlinear evolution of multi-helicity neoclassical tearing modes in HL-2A low rotation plasmas

➢ EX/P5-29 Y. B. Dong: Study of disruption and runaway electrons mitigation using multipulse supersonic molecular beam injection on HL-2A

➢ EX/P5-30 X. M. Song: First Plasma Scenario Development for HL-2M

➢ EX/P5-27 L. W. Yan: Real-time control system of neoclassical tearing modes in the HL-2A tokamak

➢ TH/P5-13 G. Z. Hao: Centrifugal force driven low frequency modes in spherical tokamak

➢ TH/P6-22 Z. H. Wang: Physics of fast component of deuterium gas jet injection in magnetized plasmas

➢ TH/P8-13 Y. Li: Nonlinear turbulent parallel momentum transport due to blobs

➢ FIP/P8-13 P. Y. Li: Recent Progress of ITER Magnet Supports Package in SWIP
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HL-2A

Thanks for your attentions!
HL-2M (under construction)HL-2A
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HL-2A

Back-up slides

◆ Highlights of recently upgraded/developed diagnostics on the HL-2A

◆ Introduction of HL-2M
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HL-2A

⚫Laser source: HCOOH laser (λ=432.5um)

⚫Composition: 4-chord Polarimeter + 4-chord Interferometer 

⚫Time resolution: 1.0us, spatial resolution: 7.0cm

1). Y.G. Li, et al., RSI. 88, 083508 (2017)
2). Y.G. Li, et al., JINST. 12, C11004 (2017)
3). Y.G. Li, et al., FED 137, 137 (2018) 

Figure: 

Schematic layout of 

HL-2A Polarimeter

and Interferometer.

HCOOH laser

◼ Multi-channel FIR laser Polarimeter-Interferometer has been commissioned on 

HL-2A for electron density and Faraday rotation angle measurements.

FIR laser Interferometer and Polarimter on the HL-2A
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HL-2A

M. Jiang, NF 2018; PoP 2017; RSI 2013&2015; 

Z. B. Shi, RSI 2014; PST2018

P.W. Shi, POP2017&2018.   W. Chen, NF2018;  

Double e-fishbone images

Tearing mode imagesOptics of ECEI system

— 24(vertical)× 16(radial)=384 channel, with a coverage of 53 

cm (vertical) × 30 cm (radial).

— Tempo-spatial resolution: 2μs, 1-3 cm.

— Abundant physics have been captured, such as TM, fishbone, 

ELM crash and multi-scale physics.

24×16 Electron Cyclotron Emission Imaging (ECEI) on the HL-2A
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HL-2A

Recent process of BES on the HL-2A
• 32-channel BES array has been installed on the outer mid-plane of HL-2A

tokamak, focusing on the edge and SOL region.

• Spatial resolution: Δr  0.8 cm； ΔZ  1.2 cm, covering r = 34.5 ~ 40.5 cm.

• High SNR has been achieved in the experiments last year.

shot # 33103, 640 ms
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HL-2A

BES applied on turbulence studies

• Turbulence density spectrum is broadened when ECRH is applied. 

• Poloidal velocity and shear increased with ECRH. 

Density spectrum

Poloidal velocity profiles

HL-2A # 33103
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HL-2A

Preliminary results from Phase Contrast Imaging: ׬ ෤𝑛𝑒𝑑𝑙

System design Expanding platform Imaging 

platform
➢ Systematic Parameters

Time resolution: 1 us
Spatial resolution: ~1mm
Detector array: 32 channels
Wavenumber: 2~15cm-1

➢ The consistent experimental results 

obtained from magnetic probe and PCI 

data confirm the reliability of this 

diagnostic. 

➢ Experimental Setup

Calibration by Sound Wave Observation of MHD 

instabilities
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HL-2A

Plasma current     Ip = 2.5 (3) MA

Major radius          R = 1.78 m

Minor radius          a = 0.65 m

Aspect ratio           R/a = 2.8

Elongation             Κ  = 1.8-2

Triangularity          δ > 0.5

Toroidal field          BT = 2.2 (3) T

Flux  swing             ΔΦ= 14Vs

Heating power 25 MW

Main parameters

Mission: In support of ITER & CFETR: high performance, high beta, 

and high bootstrap current plasma; advanced divertor configuration 

(snowflake, tripod), PWI at high heat flux,etc.

Introduction of HL-2M 
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