High Fusion Performance in Super H-Mode Experiments on Alcator C-Mod and DIII-D

Wednesday, 24 October 2018 11:45 (20 minutes)

The "Super H-mode" regime is predicted to enable pedestal height and fusion performance substantially higher than for standard H-mode operation. This regime exists due to a bifurcation of the pedestal pressure, as a function of density, that occurs in strongly shaped plasmas above a critical density. Experiments on Alcator C-Mod and DIII-D have achieved access to the Super H-mode regime, and obtained very high pedestal pressure, including the highest pedestal pressure ever achieved on a tokamak ($P_{ped} \approx 80kPa$) in C-Mod experiments operating near the ITER magnetic field. DIII-D Super H experiments have demonstrated high performance, including the highest stored energy in the present configuration of DIII-D (W~2.2-3.1MJ), while utilizing only about half of the available heating power ($P_{heat} \approx 6-12 \text{ MW}$). These DIII-D experiments have achieved the highest value of peak fusion gain, $Q_{DT,\text{equiv}} \approx 0.5$, ever achieved on a medium scale (R<2m) tokamak. Sustained, stationary high performance operation has been achieved utilizing n=3 magnetic perturbations for density and impurity control. Super H-Mode access is predicted for ITER and expected, based on both theoretical prediction and observed normalized performance, to enable ITER to achieve its performance goals ($Q=10$ at $I_p < 15 MA$, and to enable more compact, cost effective DEMO designs. We present extensive comparisons of Super H theory to experiments on C-Mod and DIII-D, predictions for Super H access on JET, JT-60SA & ITER, and coupled core-pedestal predictions of fusion performance on existing and future devices.

This work was supported in part by the US Department of Energy under DE-FG03-95ER54309, DE-FC02-99ER54512, DE-FC02-04ER54698, and DE-FC02-06ER54873.

Country or International Organization

United States of America

Paper Number

EX/2-4

Primary author: Dr SNYDER, Philip (General Atomics)

Co-authors: Dr HUBBARD, Amanda (MIT PSFC); Dr LABOMBARD, Brian (MIT PSFC); Dr PAZ-SOLDAN, Carlos (General Atomics); Dr ELDON, David (General Atomics); Dr LAGGNER, Florian (Princeton University); Prof. WILSON, Howard (University of York); Dr HUGHES, Jerry (MIT PSFC); Mr KNOLKER, Matthias (Princeton University); Dr MENEGHINI, Orso (General Atomics); Dr GROEBNER, Richard (General Atomics); Prof. MORDJICK, Saskia (College of William and Mary); Dr SCOTT, Steve (PPPL); Dr GOLFINOPOULOS, Ted (MIT PSFC); Dr EVANS, Todd (General Atomics); Dr OSBORNE, Tom (General Atomics); Dr SOLOMON, Wayne (General Atomics); Dr ZHU, Yubao (University of California, Irvine)

Presenter: Dr SNYDER, Philip (General Atomics)

Session Classification: EX/2 Pedestal & ELM Optimization

Track Classification: EXS - Magnetic Confinement Experiments: Stability