High Fusion Performance in Super H-Mode Experiments on Alcator C-Mod and DIII-D

P.B. Snyder¹, J.W. Hughes², T.H. Osborne¹, C. Paz-Soldan¹, W. Solomon¹, D. Eldon¹, T. Evans¹, T. Golfinopoulous², R.J. Groebner¹, A. Hubbard², A. Jarvinen³, M. Knolker⁴, B. LaBombard², F. Laggner⁴, A. Leonard¹, O. Meneghini¹, S. Mordijck⁵, T. Petrie¹, S. Scott⁴, H.Q. Wang⁶, J.G. Watkins⁷, H.R. Wilson⁸, Y.B. Zhu⁹

¹ General Atomics
² MIT Plasma Science and Fusion Center
³ Lawrence Livermore National Lab
⁴ Princeton University / PPPL
⁵ College of William and Mary
⁶ Oak Ridge Associated Universities
⁷ Sandia National Laboratory
⁸ York Plasma Institute, University of York, York UK
⁹ University of California-Irvine, Irvine CA

Presented at 2018 IAEA Fusion Energy Conference Ahmedabad, Gujarat, India

P.B. Snyder/IAEA/October 2018

Super H-Mode Experiments on Alcator C-Mod and DIII-D Achieve High Fusion Performance, Record Pedestal Pressure

- Super H-mode (SH) predicted in strongly shaped plasmas: high p_{ped}, increases with n_e [Snyder NF15]
- Record pedestal pressures (~80 kPa) achieved in C-Mod SH experiments [Hughes NF18]
 - Successful tests of EPED model up to ~90% of predicted ITER $\mathsf{p}_{\mathsf{ped}}$
- Record DIII-D fusion gain (Q_{DT,eq}~ 0.54). Q_{DT,eq}/laB and Q_{DT,eq}/(RB)² highest reported on any tokamak
- High performance sustained w/ 3D magnetic perturbations to control n_e and impurity accumulation
- Predicted to enable high performance on ITER, and be compatible with high separatrix density for divertor solutions

EPED Model Predicts a High Pedestal "Super H-Mode" Solution

- EPED (Snyder NF11) normally predicts a single pedestal solution
 - Intersection of calculated peeling-ballooning (PB) and KBM criticality
 - Predicted using sets of realistic model equilibria w/ self-consistent bootstrap current
- At strong shaping, fixed input parameters (including density), PB mode can go from stable to unstable (pressure driven) and back to stable again with increasing pressure and current: multiple roots for two "equations", PB and KBM

EPED Model Predicts a High Pedestal "Super H Mode" Solution

- Expect only lowest solution to be accessible for these parameters. However, can move in third dimension (eg density) to access higher roots (Super H)
- SH predicted by theory [Snyder12,15], discovered and explored in counter I_p campaigns on DIII-D [Solomon14, Snyder15, Garofalo15, Solomon16]
- 2016 C-Mod: L-I-H transition to explore Super H regime access
- 2017-18: DIII-D: co-I_p SH expts explore performance and core-edge

P.B. Snyder/IAEA/October 2018

High peak performance in Super H-Mode experiments

P.B. Snyder/IAEA/October 2018

Very High Super H Mode Pressure Predicted for C-Mod

- Alcator C-Mod is a compact, high field device (here $B_t \sim 5.3T$), capable of high δ
 - After discovery of Super H-Mode on DIII-D, predictions were made for C-Mod (right)
 - Test SH theory at high $B_t \& B_p$, zero injected torque (RF), high Z metal wall
 - Following the right parametric trajectory should enable very high pressure
 - Need to reach densities much lower than typical for C-Mod H-mode to access Super H
 - Challenging to do on a high-Z metal wall device like C-Mod

Alcator C-Mod

Access to Super H Mode on C-Mod Achieved via L-I-H Transition

- Transitioning first to I-mode, then to H-mode leads to a low n_e, low impurity H-mode (left)
- As pedestal approaches predicted kink/peeling limit, low n mode observed (center)
- Discharges at 1MA, 5.4T reach SH regime, p_{ped}~70 kPa (right)

Super H-Mode Experiments on C-Mod Yield ITER-like pped

 Super H-Mode expt at 1.4MA achieved record 81 kPa pedestal pressure on last day of Alcator C-Mod operations, ITER-like pressure at ITER-like field [Hughes NF 2018]

- EPED model successfully tested over 2 orders of magnitude in pressure on 6 tokamaks
 - No indication of significant variation of model accuracy with ho^* or $ho_{
 m ped}$

Alcator C-Mod

Broad Profiles and High Pressure Obtained in Both C-Mod and DIII-D

- High pedestal pressure enables good confinement, high global MHD limits
 - C-Mod: B_{t} =5.3-5.8Τ, I_{p} =0.8-1.4MA, a=0.19m, R=0.67m, δ~0.5
 - ~ 100-170 kPa, p_{ped} ~ 50 80 kPa

Alcator C-Mod

- DIII-D: B_t =2.1-2.2T, I_p =1.6-2.0MA, a=0.6m, R=1.67m, δ ~0.5-0.7
 - ~ 70 110 kPa, p_{ped} ~ 20 32 kPa, T_{i.0} ~ 14 18 keV

GENERAL ATOMICS

P.B. Snyder/IAEA/October 2018

Very High Pedestal Pressure, Stored Energy, and Confinement Time in Recent co-I_p Super H-Mode Experiments on DIII-D

- Deep access into Super-H regime, good agreement with EPED predictions
 - B_t =2.1T, I_p =1.6-2.0MA, a=0.6m, δ ~0.5-0.7
 - p_{ped}~30kPa, W~2 3.2 MJ (highest in present DIII-D config.) at modest P_{nbi} ~ 8-12 MW
 - Peak $\tau \sim 0.4$ -0.7s, H₉₈ ~ 2.2 -2.9, $\tau_{\rm E} \sim 30$ -67 kPa s, nT $\tau \sim 4$ 8 10²⁰ keV m⁻³ s

High Pedestal Pressure and T_i Enable High Peak Fusion Performance on DIII-D

• DD neutron rates up to 1.85 10¹⁶/s

- ~2/3 thermal, P_{fus,DD} ~ 22 kW, P_{fus,DT,eq} ~ 4.8 MW (at P_{nbi} ~ 9 MW)

High Pedestal Pressure and T_i Enable High Peak Fusion Performance on DIII-D, Record Fusion Gain

- Equivalent $Q_{DT,eq} = P_{fus,DTeq}/P_{nbi} \sim 0.54$. $Q_{DT,eq}^* = P_{fus,DTeq}/(P_{nbi}-dW/dt) \sim 1$
 - Previous DIII-D record Q = 0.32, Lazarus96 in negative central shear discharges with 2.2MA, 22m³
 - Achieved at modest B = 2.17T, I_p =2MA, V=20 m³. DT_{eq} Fusion power density ~0.2 MW/m³

Appears to be highest $Q_{DT,eq}$ and $\langle p \rangle \tau$ on any medium size (R<2m) tokamak, and highest $Q_{DT,eq}/IaB$ or $Q_{DT,eq}/R^2B^2$ on any MFE device

Sustainment and Core-Edge Compatibility of Super H-Mode Regime

Super H-Mode Sustained Using 3D Magnetic Perturbations to Control Density and Impurity Accumulation

- High performance condition sustained by applying 3D magnetic perturbation
 - Controls density and impurity accumulation
 - Feedback control of pedestal or average density demonstrated
 - Sustained W~1.9MJ, Q_{DI,eq}~ 0.15, τ ~0.2s, H98~1.6, $\beta_{\rm N}$ ~ 2.9
 - ~2s sustainment (hardware limited)

Connecting a High Performance Super H Pedestal & Core to a High Density, Radiative Divertor & SOL

- Super H (J-limited) solution predicted not to show degradation of pedestal pressure w/ n_{e.sep}
 - P-limited solution degrades with increasing $n_{\rm e,ped}$ and $n_{\rm e,sep}$ (eg high gas puff in JET ILW)
- Scan D₂ gas rate, and introduce radiative impurities (N₂) into the Div/SOL to test predictions on DIII-D
 - Use 3D magnetic perturbations (i-coil) to control particle and impurity accumulation in core
 - Use i-coil feedback to maintain ~constant density in pedestal & core as separatrix, divertor and SOL density are increased
 - Test EPED predictions of sensitivity of pedestal to separatrix conditions

D₂ gas Scan Increases Separatrix and Divertor Density while Pedestal Pressure and Confinement Remain High

- D₂ gas scan in Super H mode experiment at I_p=2MA, B_t=2.1T. Gas rate varied ~30x
 - Pedestal pressure and $\, au_{\,{
 m E}}\,$ remain ~fixed, high
 - i-coil feedback control of $n_{e,ped} \sim 7-8$ 10¹⁹ m⁻³ successful up to~110 torrL/s of D₂ gas
 - Separatrix density rises from $\sim 2.5 4 \ 10^{19} \ m^{-3}$
 - Strike point density rises from $\sim 2.5 7 \ 10^{19} \ m^{-3}$

Both pedestal and separatrix density reach ITER values while maintaining high confinement and p_{ped}

Super H-mode compatible with both high fusion performance and high separatrix density for divertor solutions.

N₂ Injection Effective for Cooling Divertor while Maintaining High Performance Core & Pedestal

- Significant cooling with ~5MW of divertor radiated power using feedback on N₂
 - Peak T_e near strike point drops more than 3x
 - Pedestal pressure and confinement remain ~constant
 - Future experiments needed to explore full detachment and impact of closed divertor

Predictions for ITER, Implications for Compact, High Performance Fusion

Super H/NSH Regime Access is Predicted for ITER: DIII-D has Achieved Needed $\beta_{N,ped}$, $n_{e,sep}$, $n_{e,ped}$ Consistently

Open issue: Physics of the Greenwald density limit which constrains degree of Super H access and predicted performance for ITER and DEMO concepts

- Core-pedestal simulations find ITER high performance (Q>10) at high n_e [Meneghini16]
- DIII-D SH experiments reproduce many characteristics of the predicted ITER regime, including β_{N,ped}~0.8, n_{e,sep}~3-4, n_{e,ped}~7-10. C-Mod produces p_{ped}~80 kPa
 - Potential for substantial improvements in ITER performance, consistent with n_{e,sep}

Super H and Near Super H Operation Enables Very High Fusion Performance per I_paB_t

Open issues: Challenges for Super H-mode operation include sustainment, impurity control, and ELM control. For JET and ITER, compatibility of strong shaping and nearby metal walls

GENERAL ATOMICS

- Simple metric of fusion performance (Q or W/P) per l_paB_t
 - Colored points are observations (> 50 kPa), red points are SH/NSH experiments
 - High Q/IaB enables ITER success, and compact, cost attractive pilot plant

High Fusion Performance and Promising Core/Edge Solutions Developed via Super H Theory & Experiment

- Theoretical prediction of Super H Mode has guided successful expts on C-Mod and DIII-D
 - Entering new era where theory can enable predictable, higher MFE performance
- Record pedestal pressures (~80 kPa) achieved in C-Mod SH experiments [Hughes NF18]
 - Successful tests of EPED model up to ~90% of predicted ITER $\ensuremath{\mathsf{p}_{\mathsf{ped}}}$
- Record DIII-D fusion gain ($Q_{DI,eq} \sim 0.54$, $Q_{DI,eq}^* \sim 1$). $Q_{DI,eq}/laB \sim 0.21$ and $Q_{DI,eq}/(RB)^2 \sim 0.04$
 - Projects (theoretically & empirically) to excellent ITER performance, compact attractive pilot plant
- High performance sustained w/ 3D magnetic perturbations to control n_e and impurity accumulation (DIII-D: W~1.9MJ, Q_{DT,eq}~ 0.15, τ ~0.2s, H₉₈~1.6, β _N~ 2.9)
- High performance maintained with strong D_2 gas puffing and N_2 injection
 - Separatrix density reaches ITER values, divertor T reduced by ~3x

Super H-mode compatible with both high fusion performance and high separatrix density for divertor solutions. Projects to excellent ITER performance and compact, attractive pilot plant

Extra Slides

C-Mod H-modes triggered using a sweep in magnetic balance leads to low-n_e high-T pedestal evolution

N₂ Injection Effective for Cooling Divertor while Maintaining High Performance Core/Pedestal

- Significant cooling going from \sim 5MW of divertor radiated power using feedback on N₂
- Peak T_e near strike point drops more than 3x, pedestal pressure and confinement remain ~constant $N_2 \stackrel{+}{+} D_2$

Similar Level of EPED Accuracy with Metal or Carbon Wall

- Metal: average error=1.46 (14%), correl=0.90, σ=0.19
- Carbon: average error=1.88 (18%), correl=0.85, σ=0.22
- No indication of strong effect of wall material on EPED accuracy
 - JET ILW has lower impurity levels, different operational limits than JET C
 - Studying impact of impurities and gas puffing

Metal Walls, EPED1 Comparison (10 C-Mod, 335 JET ILW) **EPED1** Prediction Measured Ptot.ped [>]edestal Pressure (kPa) 30 Measured 2ne.pedTe.ped 20 0 200 300 100 Case Number (Ordered by Shot #) Carbon Walls, EPED1 Comparison (225 DIIi-D, 137 JET CFC) 40 EPED1 Prediction Pedestal Pressure (kPa) Measured Ptot.ped 30 Measured 2ne,pedTe,ped 20 10 O 200 300 100 0 Case Number (Ordered by Shot #) GENERAL 25 P.B. Snyder/IAEA/October 2018