Transport at High β_p and Development of Candidate Steady State Scenarios for ITER

by

Joseph McClenaghan

with

A.M. Garofalo¹, J. Huang², G. M. Staebler¹, S.Y. Ding^{2,3}, D.B. Weisberg¹, L.L. Lao¹, X. Gong², J. Qian¹, Q. Ren¹, C.T. Holcomb⁴, O. Meneghini¹, B.C. Lyons¹, S.P. Smith¹

1. General Atomics

2. Institute of Plasma Physics, Chinese Academy of Sciences

- 3. Oak Ridge Associated Universities
- 4. Lawrence Livermore Nation Lab

Presented at 2018 IAEA Fusion Energy Conference Ahmedabad, Gujarat, India

October 22 - 27, 2018

High $\beta_p \sim 2$ ITB scenario is a promising candidate for ITER steady-state

- Shafranov shift causes bifurcation in turbulent transport at high q₉₅~10
- ITB and enhanced normalized confinement (H_{98,y2}~1.8) maintained at q₉₅~6 on DIII-D with help of reverse magnetic shear
- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER

High $\beta_p \sim 2$ ITB scenario is a promising candidate for ITER steady-state

- Shafranov shift causes bifurcation in turbulent transport at high q₉₅~10
- ITB and enhanced normalized confinement (H_{98,y2}~1.8) maintained at q₉₅~6 on DIII-D with help of reverse magnetic shear
- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER

The high q_{95} high β_p scenario transitions to high confinement at fixed β

- High performance typical operation:
 - $\beta_{p} \sim \beta_{N} \sim 3$, $f_{gw} \sim 1$, $f_{bs} \sim 0.8$, $q_{95} \sim 10-12$
 - H_{98} >1.5 even at low torque
- Multiple confinement states
 - H-mode (H₉₈=1.3)
 - Enhanced $(H_{98} = 1.8)$
- What is the difference between confinement states?

H-mode and enhanced confinement states have very different pressure profiles

- Enhanced confinement state has lower pedestal height
- Large radius transport barrier improves confinement

5

• For circular flux surface large aspect ratio limit, the drift frequency is:

$$\bar{k}_{\perp} \cdot \bar{v}_{da} \approx k_{\theta} \frac{m_{a} \left(2 v_{\parallel}^{2} + v_{\perp}^{2}\right)}{2 e_{a} R_{0}} \left[1 + \left(-\frac{1}{2} + \hat{s} - \alpha\right) \theta^{2}\right] + \dots \\ \text{Magnetic shear} \qquad \text{Shafranov shift} \\ \hat{s} = \frac{r}{q} \frac{dq}{dr} \qquad \alpha = -R_{0} q^{2} \frac{d\beta}{dr} \\ \hat{s} = -R_{0} q^{2} \frac{d\beta}{dr}$$

• For circular flux surface large aspect ratio limit, the drift frequency is:

$$\bar{k}_{\perp} \cdot \bar{v}_{da} \approx k_{\theta} \frac{m_{a} \left(2 v_{\parallel}^{2} + v_{\perp}^{2}\right)}{2 e_{a} R_{0}} \left[1 + \left(-\frac{1}{2} + \hat{s} - \alpha\right) \theta^{2}\right] + \dots$$
Magnetic shear Shafranov shift
$$\hat{s} = \frac{r}{q} \frac{dq}{dr} \qquad \alpha = -R_{0} q^{2} \frac{d\beta}{dr}$$

• For circular flux surface large aspect ratio limit, the drift frequency is:

$$\overline{k}_{\perp} \cdot \overline{v}_{da} \cong k_{\theta} \frac{m_{a} \left(2 v_{\parallel}^{2} + v_{\perp}^{2}\right)}{2 e_{a} R_{0}} \left[1 + \left(-\frac{1}{2} + \hat{s} - \alpha\right) \theta^{2}\right] + \dots$$
Magnetic shear Shafranov shift
$$\hat{s} = \frac{r}{q} \frac{dq}{dr} \qquad \alpha = -R_{0} q^{2} \frac{d\beta}{dr}$$

• For circular flux surface large aspect ratio limit, the drift frequency is:

$$\bar{k}_{\perp} \cdot \bar{v}_{da} \approx k_{\theta} \frac{m_{a} \left(2 v_{\parallel}^{2} + v_{\perp}^{2}\right)}{2 e_{a} R_{0}} \left[1 + \left(-\frac{1}{2} + \hat{s} - \alpha\right) \theta^{2}\right] + \dots$$
Magnetic shear Shafranov shift
$$\hat{s} = \frac{r}{q} \frac{dq}{dr} \qquad \alpha = -R_{0} q^{2} \frac{d\beta}{dr}$$

$$\alpha = -R_{0} q^{2} \frac{d\beta}{dr}$$

• For circular flux surface large aspect ratio limit, the drift frequency is:

$$\bar{k}_{\perp} \cdot \bar{v}_{da} \approx k_{\theta} \frac{m_{a} \left(2 v_{\parallel}^{2} + v_{\perp}^{2}\right)}{2 e_{a} R_{0}} \left[1 + \left(-\frac{1}{2} + \hat{s} - \alpha\right) \theta^{2}\right] + \dots$$
Magnetic shear Shafranov shift
$$\hat{s} = \frac{r}{q} \frac{dq}{dr} \qquad \alpha = -R_{0} q^{2} \frac{d\beta}{dr}$$

$$G_{\mu} = -R_{0} q^{2} \frac{d\beta}{dr}$$

Bifurcation of transport with mid-radius pressure gradient observed when plasma is in β_N feedback

- β_N feedback
 - $-P_{aux}$ is dependent on p

Bifurcation of transport with mid-radius pressure gradient observed when plasma is in β_N feedback

- β_N feedback
 - $-P_{aux}$ is dependent on p
- Small dp/d ρ
 - Increasing pressure gradient increases required P_{aux}

Bifurcation of transport with mid-radius pressure gradient observed when plasma is in β_N feedback

- β_N feedback
 - $-P_{aux}$ is dependent on p
- Small dp/d ρ
 - Increasing pressure gradient increases required P_{aux}
- Large dp/d ρ
 - Increasing pressure gradient decreases required P_{aux}

 High pedestal, low midradius pressure gradient state

- High pedestal, low midradius pressure gradient state
- Low pedestal, high midradius pressure gradient state

- High pedestal, low midradius pressure gradient state
- Low pedestal, high midradius pressure gradient state
- Transition between states is usually triggered by

TGLF transport code used to analyze core transport

- Quasilinear gyro-Landau fluid code fit to non-linear gyrokinetic turbulence simulations
- Recent correction to Ampere's Law leads to prediction of KBM mountain, which is important in predicting high β_{p} ITB plasmas

TGLF predicts transport at $\rho=0.6$ decreases as ITB forms

TGLF predicts transport at $\rho=0.6$ decreases as ITB forms

- Predicted flux greater for H-mode state
- TGLF input linear interpolated for intermediate state
- At ρ=0.6, turbulence is stabilized as α-s increases

Large electromagnetic transport in between two states at large radius ρ =0.8

 Predicted flux greater for H-mode confinement state

Large electromagnetic transport in between two states at large radius ρ =0.8

 Predicted flux greater for H-mode confinement state

Large electromagnetic transport in between two states at large radius ρ =0.8

- Predicted flux greater for H-mode confinement state
- When β_e=0 (i.e. electrostatic), increasing α-s is stabilizing
- How does plasma cross the KBM mountain?

Large ELM could help plasma across KBM mountain

 Large ELM that occurs 50 ms before ITB begins to form

164538

- Allows transition from Hmode to ITB state
 - ELM lowers edge T_e and increases mid-radius p'
 - Transiently lowers β_e at edge

High $\beta_p \sim 2$ ITB scenario is a promising candidate for ITER steady-state

- Shafranov shift causes bifurcation in turbulent transport at high q₉₅~10
- ITB and enhanced normalized confinement (H_{98,y2}~1.8) maintained at q₉₅~6 on DIII-D with help of reverse magnetic shear
- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER

q dependence of Shafranov shift makes sustainment of ITB at lower q₉₅ more difficult

Local measure of Shafranov shift:

q dependence of Shafranov shift makes sustainment of ITB at lower q₉₅ more difficult

Local measure of Shafranov shift:

- Plasma extended to lower q₉₅~6 via second current ramp
 - allows plasma to get to near ITB conditions before going to lower q_{05}
- Threshold $\beta_p \sim 1.9$

Enhanced confinement at q₉₅~6 has been achieved with reverse shear

Reverse shear produced with use of off-axis beams

McClenaghan/IAEA-FEC

Lower pedestal observed with ITB (same as high q_{95} !)

$$H_{98,y2}=1.3$$
 $H_{98,y2}=1.8$

Rotation ITB does not align with temperature ITB, suggests that ExB shear not important for energy confinement

30

Rotation ITB does not align with temperature ITB, suggests that ExB shear not important for energy confinement

31

Rotation ITB does not align with temperature ITB, suggests that ExB shear not important for energy confinement

 TGYRO predictive simulation suggests ITB exists w/o ExB shear

High $\beta_p \sim 2$ ITB scenario is a promising candidate for ITER steady-state

5

- Shafranov shift causes bifurcation in turbulent transport at high q₉₅~10
- ITB and enhanced normalized confinement (H_{98,y2}~1.8) maintained at q₉₅~6 on DIII-D with help of reverse magnetic shear
- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER

10

High confinement required to achieve ITER steadystate goal of Q=5 with day one heating

- OD modeling using GA Systems Code
- Constraints include:
 - $f_{gw}=1$, H_{98y2} , $f_{NI}=1$, Q=5
- H₉₈~1.5 is required to achieve Q=5 with P_{aux} = 73 MW

Iterative loop for integrated modeling is used to find self-consistent steady-state solution

- Self-consistent modeling loop
 - Iterate between kinetic evolution (TGYRO) current evolution (ONETWO), and magnetic equilibrium solver (EFIT)
- T_i, T_e, n_e, q are evolved
 - Day 1 heating: 33MW
 NNBI, 20MW ECCD, 20MW
 ICRF
 - ExB=0, T_{e,ped}=3.25 keV,
 I_p=8 MA, f_{gw}~1.2

Self-consistent modeling suggests that ITER ITB could be sustained with day one actuators

- Converged prediction shows Q~6 solution with ITB and reverse shear
 - However, Q is very sensitive to height of ITB
- Predicted n=1 no-wall stable by GATO at β_N~3.2

High $\beta_p \sim 2$ ITB scenario is a promising candidate for ITER steady-state

- Shafranov shift causes bifurcation in turbulent transport at high q₉₅~10
- ITB and enhanced normalized confinement (H_{98,y2}~1.8) maintained at q₉₅~6 on DIII-D with help of reverse magnetic shear
- Modeling suggests only modest reverse shear is needed for ITB prediction in ITER

Recent correction to EM effects predicts ITB without need for large NCS

 Prediction of T_i is roughly what is needed for Q=5

 q-profile not consistent with evolved kinetic profiles.

evolve Ti,te,ne profiles fixed q profile

FxB=0

Previous TGYRO predictive modeling suggested large NCS required for ITB formation

- TGYRO predict n_e, T_e, T_i profiles by matching predicted flux from TGLF, NEO to power balance
- n_e, T_e, T_i profiles needed for Q=5 approximately q₀=7

When there are no large type-I ELMs, and there is no ITB formation, consistent with ELM hypothesis

- Three extended high β_p discharges with varied RMP I-coil perturbations Largest I-coil perturbation(green) has no Type-I ELMs and no ITB •

Low pedestal state stability not near instability threshold

- Stability analysis performed using the ELITE code
- Gap in right corner

High pedestal state is inside the right corner gap

 State current gradient peeling limited

