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High βp~2 ITB scenario is a promising candidate for ITER 
steady-state 
•  Shafranov shift causes bifurcation 

in turbulent transport at high q95~10 

•  ITB and enhanced normalized 
confinement (H98,y2~1.8 ) 
maintained at q95~6 on DIII-D with 
help of reverse magnetic shear 

•  Modeling suggests only modest 
reverse shear is needed for ITB 
prediction in ITER 

��� ��� ��� ��� ��� ���
͕

�

�

��

��

��

��

7L�NH9�

7H�NH9�

�

�

�

�

�

��

T

��� ��� ��� ��� ��� ���
͕

�

�

�

�

�

�

7L�NH9�

7H�NH9�

�

�

�

�

�

��

T

ITER 

DIII-D 



3 McClenaghan/IAEA-FEC 

High βp~2 ITB scenario is a promising candidate for ITER 
steady-state 
•  Shafranov shift causes bifurcation 

in turbulent transport at high q95~10 

•  ITB and enhanced normalized 
confinement (H98,y2~1.8 ) 
maintained at q95~6 on DIII-D with 
help of reverse magnetic shear 

•  Modeling suggests only modest 
reverse shear is needed for ITB 
prediction in ITER 

��� ��� ��� ��� ��� ���
͕

�

�

�

�

�

�

7L�NH9�

7H�NH9�

�

�

�

�

�

��

T

��� ��� ��� ��� ��� ���
͕

�

�

��

��

��

��

7L�NH9�

7H�NH9�

�

�

�

�

�

��

T

DIII-D 

ITER 



4 McClenaghan/IAEA-FEC 

The high q95 high βp scenario transitions to high 
confinement at fixed β  

 
 

 
•  High performance typical 

operation: 
–  βp~βN ~3, fgw~1, fbs~0.8, q95~10-12 
–  H98>1.5 even at low torque 

•  Multiple confinement states 
–  H-mode (H98=1.3) 
–  Enhanced (H98 =1.8) 

•  What is the difference between 
confinement states? 
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H-mode and enhanced confinement states have very 
different pressure profiles 
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•  Enhanced confinement 
state has lower pedestal 
height  

•  Large radius transport 
barrier improves 
confinement 

H98=1.8 

H98=1.3 
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•  For circular flux surface large aspect ratio 
limit, the drift frequency is: 
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α = −R0q
2 dβ
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Simple model predicts Shafranov shift and magnetic shear 
creates bifurcation in transport 
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•  For circular flux surface large aspect ratio 
limit, the drift frequency is: 

Simple model predicts Shafranov shift and magnetic shear 
creates bifurcation in transport 
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•  βN feedback 
–  Paux is dependent on p 

Bifurcation of transport with mid-radius pressure gradient 
observed when plasma is in βN feedback 

βN>1 , Ip>550 kA  



12 McClenaghan/IAEA-FEC 

Bifurcation of transport with mid-radius pressure gradient 
observed when plasma is in βN feedback 

•  βN feedback 
–  Paux is dependent on p 

•  Small dp/dρ 
–  Increasing pressure 

gradient increases 
required Paux 

βN>1 , Ip>550 kA  



13 McClenaghan/IAEA-FEC 

•  βN feedback 
–  Paux is dependent on p 

•  Small dp/dρ 
–  Increasing pressure 

gradient increases 
required Paux 

•  Large dp/dρ 
–  Increasing pressure 

gradient decreases 
required Paux 

Bifurcation of transport with mid-radius pressure gradient 
observed when plasma is in βN feedback 

βN>1 , Ip>550 kA  
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Two distinct pedestal states are observed in high βp  
scenario 
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Two distinct pedestal states are observed in high βp 
scenario 

•  High pedestal, low mid- 
radius pressure gradient 
state 

•  Low pedestal, high mid-
radius pressure gradient 
state 

•  Transition between states 
is usually triggered by 
ELM 
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•  Quasilinear gyro-Landau fluid 
code fit to non-linear 
gyrokinetic turbulence 
simulations 

•  Recent correction to 
Ampere’s Law leads to 
prediction of KBM mountain, 
which is important in 
predicting high βp ITB plasmas 

TGLF transport code used to analyze core transport 
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TGLF KBM growth rate 
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ITB 

H-mode 

ρ=0.6 

•  Predicted flux greater for 
H-mode state 

•  TGLF input linear 
interpolated for 
intermediate state 

•  At ρ=0.6, turbulence is 
stabilized as α-s 
increases 
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Large electromagnetic transport in between two states 
at large radius ρ=0.8 
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Large electromagnetic transport in between two states 
at large radius ρ=0.8 

ρ=0.8 

•  Predicted flux greater for 
H-mode confinement 
state 

•  When βe=0 (i.e. 
electrostatic), increasing 
α-s is stabilizing 

•  How does plasma cross 
the KBM mountain? 

H-mode 
ITB 
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Large ELM could help plasma across KBM mountain 

•  Large ELM that occurs 50 
ms before ITB begins to 
form 

•  Allows transition from H-
mode to ITB state 
–  ELM lowers edge Te and 

increases mid-radius p’ 
–  Transiently lowers βe at 

edge 
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High βp~2 ITB scenario is a promising candidate for 
ITER steady-state 
•  Shafranov shift causes bifurcation 

in turbulent transport at high q95~10 
 
•  ITB and enhanced normalized 

confinement (H98,y2~1.8 ) 
maintained at q95~6 on DIII-D with 
help of reverse magnetic shear 

•  Modeling suggests only modest 
reverse shear is needed for ITB 
prediction in ITER 
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q dependence of Shafranov shift makes sustainment 
of ITB at lower q95 more difficult 

Local measure of 
Shafranov shift: α = −R0q

2 dβ
dr
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α = −R0q
2 dβ
dr

•  Plasma extended to lower 
q95~6 via second current 
ramp   
–  allows plasma to get to 

near ITB conditions before 
going to lower q95 

•  Threshold βp~1.9 

Local measure of 
Shafranov shift: 

q dependence of Shafranov shift makes sustainment 
of ITB at lower q95 more difficult 
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Enhanced confinement at q95~6 has been achieved with 
reverse shear 

Simple model: α,s 
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Lower pedestal observed with ITB (same as high q95!) 
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Rotation ITB does not align with temperature ITB, suggests 
that ExB shear not important for energy confinement 



31 McClenaghan/IAEA-FEC 

Rotation ITB does not align with temperature ITB, suggests 
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•  TGYRO predictive simulation 
suggests ITB exists w/o ExB shear  
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Rotation ITB does not align with temperature ITB, suggests 
that ExB shear not important for energy confinement 
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High  βp~2 ITB scenario is a promising candidate for 
ITER steady-state 
•  Shafranov shift causes bifurcation in 

turbulent transport at high q95~10 
 
•  ITB and enhanced normalized 

confinement (H98,y2~1.8 ) 
maintained at q95~6 on DIII-D with 
help of reverse magnetic shear 

•  Modeling suggests only modest 
reverse shear is needed for ITB 
prediction in ITER 
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High confinement required to achieve ITER steady-
state goal of Q=5 with day one heating 

Each point is 
Q=5 solution 

•  0D modeling using GA 
Systems Code  

•  Constraints include: 
–  fgw=1, H98y2 , fNI=1, Q=5  

•  H98~1.5 is required to 
achieve Q=5 with           
Paux = 73 MW 

ITER day one heating 
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Iterative loop for integrated modeling is used to find 
self-consistent steady-state solution 

•  Self-consistent modeling 
loop 
–  Iterate between kinetic 

evolution (TGYRO) current 
evolution (ONETWO), and 
magnetic equilibrium 
solver (EFIT)  

•  Ti, Te, ne, q are evolved 
–  Day 1 heating: 33MW 

NNBI, 20MW ECCD, 20MW 
ICRF 

–  ExB=0, Te,ped=3.25 keV,      
Ip= 8 MA, fgw~1.2 

imasOMAS

TGYRO
Stationary Transport

EFIT
Equilibrium

O
N
ETW

O
Sources & current 

evolution

Stability Transport Equilibrium Pedestal
Controller & Optimizer

Meneghini TH/P6-16 
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Self-consistent modeling suggests that ITER ITB could 
be sustained with day one actuators  

•  Converged prediction 
shows Q~6 solution with ITB 
and reverse shear 
–  However, Q is very sensitive 

to height of ITB 

•  Predicted n=1 no-wall 
stable by GATO at βN~3.2  

ExB=0 
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High βp~2 ITB scenario is a promising candidate for ITER 
steady-state 
•  Shafranov shift causes bifurcation 

in turbulent transport at high q95~10 

•  ITB and enhanced normalized 
confinement (H98,y2~1.8 ) 
maintained at q95~6 on DIII-D with 
help of reverse magnetic shear 

•  Modeling suggests only modest 
reverse shear is needed for ITB 
prediction in ITER 
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Recent correction to EM effects predicts ITB without 
need for large NCS 

•  Prediction of Ti is roughly 
what is needed for Q=5  

•  q-profile not consistent 
with evolved kinetic 
profiles. 

evolve Ti,te,ne  profiles 
fixed q profile 

ExB=0 
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Previous TGYRO predictive modeling suggested large 
NCS required for ITB formation 

•  TGYRO predict ne, Te, Ti 
profiles by matching 
predicted flux from 
TGLF, NEO to power 
balance  

•  ne, Te, Ti profiles 
needed for Q=5 
approximately q0=7 

ITB formation 

Fixed Ip=7.4 MA 



40 McClenaghan/IAEA-FEC 

When there are no large type-I ELMs, and there is no ITB 
formation, consistent with ELM hypothesis 

•  Three extended high βp discharges with varied RMP I-coil perturbations 
–  Largest I-coil perturbation(green) has no Type-I ELMs and no ITB 
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Low pedestal state stability not near instability threshold  

•  Stability analysis 
performed using 
the ELITE code 

•  Gap in right corner 
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High pedestal state is inside the right corner gap  

•  State current 
gradient 
peeling limited 


