# Amelioration of PMI and improvement of plasma performance with a flowing liquid Li limiter and Li conditioning on EAST (FIP/3-5Ra)

R. Maingi, J.S. Hu, G.Z. Zuo, Z. Sun, and the PRC-US PMI team

### **Experiments on FTU with a Liquid Tin Limiter (FIP/3-5Rb)**

G. Mazzitelli, M.L. Apicella, M. Iafrati, G. Apruzzese, and the FTU Team

IAEA FEC 2018
Gandhinagar, Gujarat, India
Oct. 22-27, 2018





### **Motivation and Outline**

- A main challenge for reactor designs is ability to exhaust large divertor heat loads, steady & transient
  - Handling neutron damage and PMI difficult for solid PFCs
- EAST and FTU are exploring flowing liquid PFCs
  - Liquid metal PFCs are part of European roadmap, and US and Chinese PFC strategies



### **Motivation and Outline**

- A main challenge for reactor designs is ability to exhaust large divertor heat loads, steady & transient
  - Handling neutron damage and PMI difficult for solid PFCs
- EAST and FTU are exploring flowing liquid PFCs
  - Liquid metal PFCs are part of European roadmap, and US and Chinese PFC strategies
- EAST: 3 generations of flowing liquid lithium limiters
  - Reduced recycling, ELM mitigation, improved power exhaust and compatibility with increasing P<sub>aux</sub>, I<sub>p</sub>
  - Also new results on lithium powder injection for ELM control
- FTU: comparing liquid tin and liquid lithium limiters
  - Good performance for liquid tin with  $q_{peak} \sim 18 \text{ MW/m}^2$



### Amelioration of plasma-material interactions and improvement of plasma performance with a flowing liquid Li limiter and Li conditioning on EAST



R. Maingi, J.S. Hu, G.Z. Zuo, Z. Sun, and the PRC-US PMI team



















### The science and technology of flowing liquid lithium limiters has been advanced via US-PRC PMI collaboration on EAST

- Three generations of liquid lithium limiters tested in EAST
  - Prototype SS plate tested in HT-7
  - Gen. 1 (12/2014) tested in EAST
  - Gen. 2 (12/2016) tested in EAST
  - Gen. 3 (8/2018) tested at UI-UC and PPPL and then EAST



| Generation | Heat Sink | SS thickness | JxB   | Max. P <sub>aux</sub> | Max. q <sub>exh</sub> | Max. W <sub>MHD</sub> |
|------------|-----------|--------------|-------|-----------------------|-----------------------|-----------------------|
|            |           | (mm)         | pumps | (MW)                  | $(MW/m^2)$            | (kJ)                  |
| 1          | Cu + SS   | 0.1          | 1     | 1.9                   | 3.5                   | 120                   |
| 2          | Cu + SS   | 0.5          | 2     | 4.5                   | 4                     | 170                   |
| 3          | Mo (TZM)  | NA           | 2     | 8.3                   | TBD                   | 280                   |



### 1st Generation flowing liquid lithium limiter compatible with H-mode discharges in EAST (10/2014)

- Cu heat sink, SS coating
  - Top distributor, many holes
  - Free surface gravity driven flow on front face
  - j x B pump recirculates Li
- Inserted at midplane on MAPES system



J. Ren, Rev. Sci. Instrum. 86 (2015) 023504J.S. Hu, Nucl. Fusion 56 (2016) 046011

G.Z. Zuo, Nucl. Fusion 57 (2017) 046017



## 1st Generation flowing liquid lithium limiter compatible with H-mode discharges in EAST (10/2014)

Cu heat sink, SS coating - Top distributor, many holes Feed pipe Distributor box - Free surface gravity driven Li flow inside box ← Guide flow on front face plate j x B pump recirculates Li Li outflow from channels Inserted at midplane on Collector Distributor channels DC EM pump MAPES system Li tank Limiter Rail Exchange box Screw Bellow H port J. Ren, Rev. Sci. Instrum. 86 (2015) 023504

J.S. Hu, Nucl. Fusion 56 (2016) 046011G.Z. Zuo, Nucl. Fusion 57 (2017) 046017

## 1st Generation flowing liquid lithium limiter compatible with H-mode discharges in EAST (10/2014)

Cu heat sink, SS coating - Top distributor, many holes Feed pipe Distributor box - Free surface gravity driven Li flow inside box ← Guide flow on front face plate j x B pump recirculates Li Li outflow from channels Inserted at midplane on Collector Distributor channels DC EM pump MAPES system H-modes and ohmic discharges compatible with Li tank flowing Li limiter Limiter  $-q_{peak}^{limiter} \sim 3.5 \text{ MW/m}^2$ Exchange box Bellow Limiter and distributor damaged during operations, so new design implemented H port J. Ren, Rev. Sci. Instrum. 86 (2015) 023504 for Gen. 2 J.S. Hu, Nucl. Fusion 56 (2016) 046011 G.Z. Zuo, Nucl. Fusion 57 (2017) 046017

IAEA FEC 2018: Gandhinagar, India

25Oct2018

## 2<sup>nd</sup> Generation flowing liquid lithium limiter (2016) had design upgrades compared to 1<sup>st</sup> generation limiter (2014)

- Improved distributor manufacturing resilient to cracking, plus
  - Two parallel paths for jxB pumps to pump liquid Li up the back side
  - 5x thicker stainless steel protective layer





## 2<sup>nd</sup> Generation flowing liquid lithium limiter (2016) had design upgrades compared to 1<sup>st</sup> generation limiter (2014)

- Improved distributor manufacturing resilient to cracking, plus
  - Two parallel paths for jxB pumps to pump liquid Li up the back side
  - 5x thicker stainless steel protective layer
- Improved surface texturing led to improved wetting and surface coverage
  - < 30% in 2014</p>
  - > 80% in 2016







## 2<sup>nd</sup> Generation FLiLi lithium limiter performed well in auxiliary heated discharges in EAST

- Limiter placed within 1 cm of separatrix in RF-heated H-modes
- FLiLi exposed to P<sub>aux</sub> ≤ 4.5 MW-
  - $q_{peak} \sim 4 MW/m^2$
  - No limiter damage observed after first plasma exposure
  - Limiter re-exposed and flow restarted a week after first experiment



## 2<sup>nd</sup> Generation FLiLi lithium limiter performed well in auxiliary heated discharges in EAST

- Limiter placed within 1 cm of separatrix in RF-heated H-modes
- FLiLi exposed to P<sub>aux</sub> ≤ 4.5 MW
  - $q_{peak} \sim 4 MW/m^2$
  - No limiter damage observed after first plasma exposure
  - Limiter re-exposed and flow restarted a week after first experiment
- Progressive conditioning and ELM mitigation with limiter inserted at midplane





## 2<sup>nd</sup> Generation FLiLi lithium limiter performed well in auxiliary heated discharges in EAST

- Limiter placed within 1 cm of separatrix in RF-heated H-modes
- FLiLi exposed to P<sub>aux</sub> ≤ 4.5 MW
  - $q_{peak} \sim 4 MW/m^2$
  - No limiter damage observed after first plasma exposure
  - Limiter re-exposed and flow restarted a week after first experiment
- Progressive conditioning and ELM mitigation with limiter inserted at midplane
- Concern over Li Cu reactivity underpins Gen. 3, made out of TZM, a Mo alloy







## EAST: 3<sup>rd</sup> generation flowing liquid Li limiter fabricated; shipped to EAST 6/18 and exposed to plasma 8/18

- Made of Mo for Li compatibility
  - One plate sent to EAST, second plate sent to UI-UC for testing in HIDRA
  - Extensive heater testing at UI-UC
  - Stainless steel distributor and collector brazed onto plate
- Experiment in 8/18 exposed FLiLi limiter to plasmas with P<sub>aux</sub>=8.3 MW @ 3cm from separatrix
  - Reduced recycling, slightly higher stored energy, (ELM mitigation)





## EAST: 3<sup>rd</sup> generation flowing liquid Li limiter fabricated; shipped to EAST 6/18 and exposed to plasma 8/18

- Made of Mo for Li compatibility
  - One plate sent to EAST, second plate sent to UI-UC for testing in HIDRA
  - Extensive heater testing at UI-UC
  - Stainless steel distributor and collector brazed onto plate
- Experiment in 8/18 exposed FLiLi limiter to plasmas with P<sub>aux</sub>=8.3 MW @ 3cm from separatrix
  - Reduced recycling, slightly higher stored energy, (ELM mitigation)
  - Future versions: 3D printed W PFC, limiter and/or divertor sector(s)?





## ELMs eliminated with real-time Li powder injection into the W upper divertor in EAST

- Powder injected outboard of X-point in upper SOL
  - Injector uses vibrating piezoelectric disk to inject controlled amounts of powder
  - Similar technology used for B injection in AUG (Lunsford, FIP/2-4)







### ELMs eliminated with real-time Li powder injection into the W upper divertor in EAST

- Powder injected outboard of X-point in upper SOL
  - Injector uses vibrating piezoelectric disk to inject controlled amounts of powder
  - Similar technology used for B injection in AUG (Lunsford, FIP/2-4)
- Progressive reduction of recycling and elimination of **ELMs** 
  - Stored energy reduced by <</li> 10%, because injection rate was higher than needed



25Oct2018

### Real-time Li powder injection also suppressed W influx on EAST

- Control of high-z influx a need for devices with metallic PFCs
  - Often need D or impurity gas puffing to reduce target temperature and sputtering
- Real-time Li injection reduced W-I line emission
  - Effect persists for some time after Li injection stopped







### **Experiments on FTU with a Liquid Tin Limiter**

G. Mazzitelli, M.L. Apicella, M. lafrati, G. Apruzzese, and the FTU Team

IAEA FEC 2018 Gandhinagar, Gujarat, India Oct. 22-27, 2018



### Liquid metal limiters tested in FTU since 2006

### Performance with tin liquid limiter







### Liquid Tin Limiter - TLL

### A tin liquid limiter has been used for the first time in a tokamak







- Capillary porous system used to contain Sn
- Very flexible and versatile layout: the limiter head can be easily changed
- At high temperature tin is very corrosive: the liquid tin limiter layout prevents copper corrosion

 I in allows a wide temperature operational window with low vapor pressure

Molybdenum pipe



### Tin has a wide operational temperature window

- Evaporative flux is one of the main issue for steady state operation
- One of the aim of the experiments in FTU is to investigate the operational window both for tin and lithium





### Characteristics of TLL compared with previous LLL

| Parameter               | Lithium limiter | Tin limiter |
|-------------------------|-----------------|-------------|
| Initial surface temp.   | ≈ 190-200 °C    | ≥ 290 °C    |
| Plasma interacting area | 80              | 100         |
| Liquid metal amount     | 80 g            | 30 g        |
| Reservoir               | Yes             | No          |
| Curvature radius        | 29 cm           | 130 cm      |



### TLL was operated at the last closed flux surface



## Temperature window with TLL up to 1700 °C; high vapor pressure only near upper end





## Temperature window with TLL up to 1700 °C; high vapor pressure only near upper end



 The difference, after 1s, between ANSYS calculation and experimental surface temperature could be explained by "vapour shield" phenomena



## Core impurity concentrations obtained from UV spectroscopic analysis



When evaporation becomes dominant the UV spectrum is dominated by Li or Sn lines. From the Zeff measurements we can respectively infer a concentration of

- $n_{Sn}/n_e \sim 0.05\%$
- $n_{Li}/n_e \sim 1\%$

### D retention in Sn low

- Tin samples exposed in GyM facility (10<sup>24</sup> m<sup>-2</sup>) and analyzed by ion beams
- D concentration of 0.18 at% detected only in first few hundred nm of sample surface
- No time dependences has been observed on sample stored in air at room temperature (one week two months)
- Comparing with previous measurements [1], despite the fluence being 50x higher, the D content is greater by only 2x in at%. Not far from saturation?



\* Carried out in collaboration with E. Vassallo -Piero Caldirola Institute -CNR Milano , E.Alves and R. Mateus IPFN IST University of Lisbon- Portuga

[1] J. Louriero et al., JNM **12** (2017) 709

## Flowing liquid metal PFCs performing well in plasmas with increasingly challenging PMI

- Three generations of flowing liquid lithium limiters exposed in EAST
  - Plasma performance was good
  - PMI damage avoidance and improved flow uniformity needed
  - Lithium powder dropper successful at eliminating ELMs and reducing W influx in USN with W PFCs



## Flowing liquid metal PFCs performing well in plasmas with increasingly challenging PMI

- Three generations of flowing liquid lithium limiters exposed in EAST
  - Plasma performance was good
  - PMI damage avoidance and improved flow uniformity needed
  - Lithium powder dropper successful at eliminating ELMs and reducing W influx in USN with W PFCs
- Liquid tin limiters exposed in FTU
  - No performance degradation with TLL
  - High heat flux ~ 18 MW/m<sup>2</sup> exhausted
  - Low core Sn concentration and low D retention in Sn confirmed
- Concepts and designs for liquid metals PFCs for next step devices and reactors needed



### Thank you for this opportunity



## Recycling and ELMs progressively reduced with constant Li injection rate in EAST



R. Maingi, Nucl. Fusion **58** (2018) 024003; builds on R. Maingi, *Phys. Rev. Letts.* **107** (2011) 145004



- SOLPS analysis shows local divertor recycling coefficient drops by 20%
- J. Canik, IEEE Trans. Plasma Sci. 46 (2018) 1081; builds on J. Canik, Phys. Plasmas 18 (2011) 056118



### **SOLPS** modeling of $D_{\alpha}$ , $\Gamma$ changes indicate level of D removal with Li powder injection

- 2D plasma/neutrals modeling performed, based on measured upstream  $\rm n_e$  profiles before and during Li injection for active recycling control
- For ion fluxes near measured values, SOLPS recycling scans for multiple assumed upstream conditions are consistent with measured  $D_{\alpha}$ ,  $\Gamma$  trends
- $\Delta R \sim 20\%$  is consistent with magnitude of D<sub>a</sub>, Γ with Li
  - High n<sub>e</sub>upstream: R ~ 0.99->0.8
  - Low n<sub>e</sub>upstream: R ~0.8->0.6







25Oct2018

## ELMs mitigated (eliminated?) with new Li granule dropper injection on EAST (8/18)

- Powder (50 μm) injection shown to eliminate ELMs
  - Issue: powder has limited penetration depth through the SOL at high power
- Granule dropper (700 μm) deployed for first time and shown to eliminate ELMs
  - Most likely due to ne profile control via wall conditioning: desire SOL ablation
  - Penetration of granules can be easily controlled, i.e. use impeller to hit granules in at tangential angles to target ablation profile





## ELMs and plasma-materials interactions mitigated with flowing lithium PFCs and active lithium injection in EAST

- 3<sup>rd</sup> generation flowing liquid lithium (FLiLi) limiter inserted into EAST H-modes
  - Made of a Moybdenum alloy
  - Recycling reduced and PMI mitigated with limiter inserted
  - Brought HIDRA online to test limiter designs
- ELMs eliminated with real time lithium powder injection into the upper W divertor
  - Progressive conditioning
  - New imaging diagnostics:
     camera & dual filter technique



Time (s)

### The liquid metal limiters during the FTU pulse



#### Equi Psi

( from "ODINB" )

Up to 1.5cm from the LCMS







Vis. Spectr. 🙌 IR Camera





Closed the LCMS



