Reduction of Asymmetric wall force in JET and ITER including Runaway Electrons

H. Strauss, HRS Fusion

S. Jacmich, Laboratory for Plasma Physics, ERM/KMS, Brussels, Belgium E. Joffrin, IRFM, CEA centre de Cadarache

V. Riccardo , J. Breslau, S. Jardin *Princeton Plasma Physics Lab*

R. Paccagnella, Consorzio RFX and Istituto Gas Ionizzati del CNR

G. Y. Fu, Zhejiang University, Hangzhou, China and JET contributors

FEC 2018 IAEA-CN-TH/4-4

HRS Fusion

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Eurotom research and training programme 2014-2018 under gran agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

- Asymmetric wall force in ITER disruptions was thought a major problem
 - JET AVDE simulations with M3D and data are in good agreement
 - asymmetric wall force reduction in simulation and JET MGI experiments
 - wall force is smaller in JET with faster current quench
- ITER disruption simulations
 - predict asymmetric wall force comparable to JET
 - not 25 times larger as in previous predictions
 - ITER CQ is relatively fast except when runaway electrons carry current
- Runaway electron fluid MHD
 - small asymmetric wall force wall force in JET with REs
 - possible asymmetric wall force wall force in ITER

Comparison of M3D simulation and JET shot 71985

Validation of M3D compared maximum values in time of several variables [Strauss, et al. Phys. Plas. **24** (2017)]

variable	simulation	experiment
Z_p	1.5m	1.4m
ΔF_x	1.1 MN	
$\pi B \Delta M_{IZ}$	1.2 MN	1.3 MN
$N_{rotation}$	2.8	2.8
$\Delta I/I$	0.045	0.055

 Z_p - vertical displacement

 Δ - amplitude of toroidal variation

 ΔF_x - asymmetric wall force $M_{IZ} = Z_p I_p$ - vertical current

moment

 $N_{rotation}$ - number of toroidal rotation periods

tation periods

 ΔI - amplitude of toroidally varying part of toroidal current

Asymmetric wall force is approximated by NoII force:

$$\Delta F_x \approx \pi B \Delta M_{IZ}$$

Reduction of asymmetric wall force

Asymmetric wall force depends on τ_{CQ}/τ_{wall} , where τ_{CQ} is the current quench time and τ_{wall} is the resistive wall penetration time.

Solid curves: M3D simulations of shot 71985 where τ_{CQ}/τ_{wall} was artificially varied. Plots of asymmetric wall force ΔF_x and Noll formula $\Delta F_x \approx \pi B \Delta M_{IZ}$. Highest end of the curves have experimental values τ_{CQ}/τ_{wall} .

Comparison with data: dots: ΔM_{IZ} and τ_{CQ} calculated for shots 85858 and 90386 in [S. Jachmich, et al., EPS (2016)]

Points "MGI" are all JET shots "VDE+MGI" with ILW, 2011-2016.

 au_{CQ} and ΔM_{IZ} were calculated from the data.

ITER disruption simulations

[Strauss, Phys. Plasmas **25** 020702 (2018)] An ITER inductive scenario 2 15MA initial state was used, with current profile modified to represent MGI mitigation. The current was set to zero outside the q=2 magnetic surface. This made the plasma MHD unstable and caused a TQ, as well as a VDE.

The plasma was evolved at constant current and then decreased linearly.

- (a) Time history of $I, Z_p, \Delta F_x, P$ in wall time units. Simulation with $\tau_{CQ}/\tau_{wall} = 1/2$
- (b) ΔF_x , Noll relation $\pi B \Delta M_{IZ}$, in MN, and halo current fraction $100 \times HF$ as

functions of au_{CQ}/ au_{wall} . ITER might be in the regime $au_{CQ} \sim au_{wall}$, so the

asymmetric wall force could be small. ITER: $\tau_{wall} = 250ms$, JET: $\tau_{wall} = 5ms$.

Runaway Electrons - Fluid model

MHD simulations were extended by adding RE fluid model. Runaway fluid equations are [Helander 2007], [Cai and Fu 2015]

$$\frac{1}{c}\frac{\partial\psi}{\partial t} = \nabla_{\parallel}\Phi - \eta(J_{\parallel} - J_{\parallel RE}) \tag{1}$$

and $J_{\parallel RE}$ is the RE current density.The RE continuity equation can be expressed, assuming the REs have speed c

$$\frac{\partial J_{\parallel RE}}{\partial t} \approx -c\mathbf{B} \cdot \nabla \left(\frac{J_{\parallel RE}}{B}\right) + S_{RE} \tag{2}$$

where S_{RE} in the following is a model source term.

$$S_{RE} = \alpha(t)(J_{\parallel} - J_{\parallel RE})J_{\parallel RE} > 0$$
 (3)

Approximately

$$\mathbf{B} \cdot \nabla \left(\frac{J_{\parallel RE}}{B} \right) = \mathcal{O}(v_A/c) \approx 0$$
 (4)

which is solved similarly to electron temperature, like a bounce average method.

JET RE asymmetric wall force

- (a) Simulation initialized with JET shot 71985, with REs added, showing time history of current I, RE current I_{RE} , vertical displacement Z_p , and ΔF_x .
- (b) Solid curves: ΔF_x in M3D simulations of shot 71985 where τ_{CQ}/τ_{wall} was artificially varied, without REs, same as in Slide 4. Data points and simulations with REs in lower right. ΔF_{RE} as a function of τ_{CQ}/τ_{wall} . As in (a) $I_{REmax} = I_{p0}/2$.

dots: RE shots "VDE+MGI" and "MGI+Runaway" from ILW, 2011-2016 database.

JET data and simulations agree well. REs produce small asymmetric wall force.

ITER REs

With REs, 2 quantities determine wall force, au_{CQ}/ au_{wall} and I_{REmax}/I_{p0} . $^{\Delta F_{x}}$ vs. $^{\tau_{CO}/\tau_{wall}}$

and
$$\xi = Z_p$$
. The ratio $I_{REmax}/I_{p0} = 2/3$, and $\tau_{CQ}/\tau_{wall} = 16$.

(b)
$$\Delta F_x$$
, ΔF_{RE} for $I_{REmax}/I_{p0}=1,2/3,1/2,$ as a function of τ_{CQ}/τ_{wall} .

When
$$I_{REmax}/I_{p0}=1/2$$
, the force is small, as in JET with REs.

When
$$I_{REmax}/I_{p0}=1$$
, the force is large when $\tau_{CQ}/\tau_{wall}>>1$.

Summary

- Simulations of asymmetric wall force with M3D 3D MHD code are consistent with JET data.
- JET asymmetric wall force decreases with ratio of CQ time to resistive wall time, $\tau_{CQ}/\tau_{wall}.$
- ITER might be in $\tau_{CQ} \sim \tau_{wall}$ regime, where asymmetric wall force and halo current could be small.
- Runaway electrons (REs) in JET produce small asymmetric wall force even with $\tau_{CQ}>>\tau_{wall}$.
- In ITER, the wall force depends on the ratio of the maximum RE current to initial current. If $I_{RE}/I_{p0}\approx$ 1, the force can be large.

