

Increasing the density in Wendelstein 7-X: Benefits and limitations

<u>G. Fuchert</u>¹, K.J. Brunner¹, K. Rahbarnia¹, T. Stange¹, D. Zhang¹, J. Baldzuhn¹, M.N.A. Beurskens¹, S.A. Bozhenkov¹, C.D. Beidler¹, S. Brezinsek², R. Burhenn¹, H. Damm¹, A. Dinklage¹, M. Hirsch¹, Y. Kazakov³, J. Knauer¹, Y. Feng¹, A. Langenberg¹, H.P. Laqua¹, S. Lazerson⁴, N. Pablant⁴, E. Pasch¹, T. Sunn Pedersen¹, E.R. Scott¹, F. Warmer¹, V. Winters⁵, R.C. Wolf^{1,6} and W7-X team

¹Max Planck Institute for Plasma Physics, Greifswald, Germany, ²Forschungszentrum Jülich, Jülich, Germany, ³Royal Military Academy, Brussels, Belgium, ⁴Princeton Plasma Physics Laboratory, Princeton NJ, USA, ⁵University of Wisconsin-Madison, Madison WI, USA, ⁶Technische Universität Berlin, Berlin, Germany

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Motivation: Density scaling of the energy confinement

Empirical scaling ISS04

 $\tau_{\rm ISS04} = 0.134a^{2.28}R^{0.64}P^{-0.61}n_{\rm e}^{0.54}B^{0.84}\iota_{2/3}^{0.41}$

- Positive density scaling and negative power scaling ("power degradation").
- Triple product benefits from increasing the density.
- Power and density scaling agree with neoclassical plateau regime. [Dinklage , NF 47, (2007)]
- ISS04 close to a gyro-Bohm scaling: turbulent transport?

Neoclassical prediction for W7-X

- Neoclassical transport modeling suggests a negative power scaling close to ISSO4 and a stronger positive density scaling. [Turkin, PoP 18, (2011)]
- \rightarrow Increase the density!

Limitations? Empirical τ_{E} scaling?

Energy confinement time before boronization

- Scaling close to ISS04
- Density limited by radiative collapses

Critical density

- Comparison of analytical models with experimental observations
- Critical density before and after boronizatoin

Energy confinement time after boronization

- Scaling after boronization
- Energy confinement time at higher densities

Summary and conclusion

ISS04

Scenario

 $\tau_{\rm E} \sim a_0 n^{\alpha} \mathbf{P}^{\beta}$

Standard divertor

Limiter (OP1.1)

-0.64

-0.61

1.1

5

3.0

Energy confinement before boronization

- Before boronization, τ_E showed a scaling close to ISS04 in hydrogen.
- Densities above ~ 4.10¹⁹ /m³ were only accessible transiently with pellet fuelling due to radiative collapses.

a

0.16

0.13

α

0.56

0.75

0.54

Density scaling of the energy confinement

Density scaling of the energy confinement

Density scaling of the energy confinement

Predicting the critical density for strong edge radiation

- Critical density from the detachment model by Itoh [K. Itoh and S. Itoh, J. Phs. Soc. Jpn. 57 (1988)]
- Sudo density limit

[S. Sudo et al., Nucl. Fusion 30 (1990)]

- Limits with different transport and radiation models [H. Wobig, *Plasma Phys. Control. Fusion* 42 (2000)]
- Modified Itoh model for W7-AS [L. Giannone et al., Plasma Phys. Control. Fusion 45 (2003)]
- Implicit dependences on transport and edge impurities (low Z) have to be made explicit [Zanca et al., Nucl. Fusion 57 (2017)]

$$\bar{n}_{\rm c} = \bar{n}_{\rm c,edge} \cdot \delta$$

Predicting the critical density for strong edge radiation

- Critical density from the detachment model by Itoh [K. Itoh and S. Itoh, J. Phs. Soc. Jpn. 57 (1988)]
 Sudo density limit [S. Sudo et al., Nucl. Fusion 30 (1990)]
- Limits with different transport and radiation models [H. Wobig, *Plasma Phys. Control. Fusion* 42 (2000)]
- Modified Itoh model for W7-AS [L. Giannone et al., Plasma Phys. Control. Fusion 45 (2003)]
- Implicit dependences on transport and edge impurities (low Z) have to be made explicit [Zanca et al., Nucl. Fusion 57 (2017)]

Predicting the critical density for strong edge radiation

G. Fuchert et al., EX/3-5, IAEA-FEC 2018 Ahmedabad, India

- Critical density from the detachment model by Itoh [K. Itoh and S. Itoh, J. Phs. Soc. Jpn. **57** (1988)]
- Sudo density limit [S. Sudo et al., Nucl. Fusion 30 (1990)]
- Limits with different transport and radiation models [H. Wobig, Plasma Phys. Control. Fusion 42 (2000)]
- Modified Itoh model for W7-AS [L. Giannone et al., Plasma Phys. Control. Fusion 45 (2003)]
- Implicit dependences on transport and edge impurities (low Z) have to be made explicit [Zanca et al., Nucl. Fusion 57 (2017)]

Details on the magnetic configurations:

[J. Geiger et al., Plasma Phys. Control. Fusion 57 (2015)]

0.57

11

 $\bar{n}_{\rm c} = \lambda \frac{P_{\rm heat}}{2}$

Critical density before boronization

- Large scatter in n_c
- Weaker power scaling than predicted (if any...)
- Possible reasons:
 - Changing impurity content (depending on heating power?)
 - Profile effects, importance of edge density (δ)
 - Model not applicable (local effects, changing main radiator,...)

Hydrogen plasmas with central X2-heating

Critical density before boronization

- Large scatter in n_c
- Weaker power scaling than predicted (if any...)
- Possible reasons:
 - Changing impurity content
 → under investigation
 - Profile effects, importance of edge density (δ)
 - Model not applicable

 → local effects exist (e.g. Marfe [U. Wenzel, NF 58 (2018)]), but their importance is unclear
- Common mitigation strategies:
 - Pellet fueling (decouple core and edge density)
 - Wall conditioning by e.g. boronization [->R. Brakel, EX/P8-17]

[G. Kocsis, T. Szepesi]

Critical density after boronization

- After boronization, radiation from oxygen and carbon lines went down significantly
 - Reduced by a factor of 5 to 10
 - Only moderate additional boron lines
 - [-> Pedersen et al., EX/9-1]
- At the same time, n_c increased by a factor of ~3
 - In the scaling law this would correspond to a reduction of f_{imp} by a factor of 5 to 10
- Configurational effects are either absent or subtle

Profile effects

- $\bar{n}_{\rm c} = \bar{n}_{\rm c,edge} \cdot \delta$
- Estimate edge density by $\delta = n_0/n_{0.85\rho}$
- Significantly improved agreement with scaling for n_e/δ
- → Profile effects are a major source for the scatter in n_c

Profile effects

- $\bar{n}_{\rm c} = \bar{n}_{\rm c,edge} \cdot \delta$
- Estimate edge density by $\delta = n_0/n_{0.85\rho}$
- Significantly improved agreement with scaling for n_e/δ
- → Profile effects are a major source for the scatter in n_c

Energy confinement after boronization

- For simplicity, only X2-heated plasmas are shown
 - In O2 similar observations, but P_{absorbed} < P_{heat}.
- Also in these experiments a positive density scaling of τ_E is found.
- This trend can be observed even in single experiments.
- Density scaling gets weaker at high $f_{rad} = P_{rad}/P_{ECRH}$ or densities close to n_c .

Energy confinement after boronization

- For simplicity, only X2-heated plasmas are shown
 - In O2 similar observations, but P_{absorbed} < P_{heat}.
- Also in these experiments a positive density scaling of τ_E is found.
- This trend can be observed even in single experiments.
- Density scaling gets weaker at high $f_{rad} = P_{rad}/P_{ECRH}$ or densities close to n_c .

Energy confinement after boronization

- For simplicity, only X2-heated plasmas are shown
 - In O2 similar observations, but P_{absorbed} < P_{heat}.
- Also in these experiments a positive density scaling of τ_E is found.
- This trend can be observed even in single experiments.
- Density scaling gets weaker at high $f_{rad} = P_{rad}/P_{ECRH}$ or densities close to n_c .

Energy confinement after boronization

- For simplicity, only X2-heated plasmas are shown
 - In O2 similar observations, but $P_{absorbed} < P_{heat}$.
- Also in these experiments a positive density scaling of τ_{F} is found.
- This trend can be observed even in single experiments.
- Density scaling gets weaker at high $f_{rad} = P_{rad} / P_{FCRH}$ or densities close to n_c .

Energy confinement close to n_c

- Before boronization, the density scaling becomes weaker above ~0.5.n_{c.5%}
- After boronization, the density scaling becomes weaker above ~1.0·n_{c.5%}
- f_{rad} increases with n_e/n_c
- As it was shown before, high densities as such are not an issue

Summary and conclusion

Energy confinement time in W7-X

- Improves with density, roughly in-line with ISS04 ($\tau_{\rm E}$ ~n^{0.54}).
- Improvement obviously limited by radiative collapses.
 - Critical density can be estimated from analytical models.
 - Boronization crucial to achieve relevant densities.

Summary and conclusion

lendelstein X

Energy confinement time in W7-X

- Not one single scaling law for the entire parameter range.
 - Unravelling the main transport/loss channels has only started.
- Plasmas with pellet-fueling [-> Bozhenkov et al., EX/P8-8] or O2 and NBI-heating are not even included in the analysis yet.

 $\tau_{\rm E}$ -scalings need to take different regimes and operational limits into account. This is well established for tokamaks, but not yet for stellarators.

