GYROKINETIC ANALYSIS OF PEDESTALS

¹ M. Kotschenreuther, X. Liu, D. Hatch, S. Mahajan, L. Zheng, P. Valanju

- ²A. Diallo
- ³ R. Groebner and the DIII-D team
- ⁴C. Maggi, C. Giroud, F. Koechel, V. Parail, S. Saarelma and JET contributors*
- ⁵ A. Chankin

¹University of Texas ²Princeton Plasma Physics Lab. ³General Atomics ⁴Culham Centre for Fusion Energy ⁵Max-Planck-Institute

*See the author list of X. Litaudon et al 2017 Nucl. Fusion 57 102001

THE IMPORTANCE OF TRANSPORT IN H-MODE PEDESTALS

 Pedestal energy losses determine how much heating power is needed to sustain the pedestal, and hence, the core: this determines the denominator of τ_{F}

Transport of density and impurities are also important, of course

To project, and optimize, H-mode burning plasmas, we must understand the transport in pedestals, and the instabilities that cause it.

We begin by identifying transport agents in todays experiments

IDENTIFICATION OF INSTABILITIES CAUSING TRANSPORT IN PRESENT EXPERIMENTAL PEDESTALS: WE USE A NEW CONCEPT

> Built on exploiting the "fingerprints" of pedestal instabilities based on what they do

 Specifically: their <u>relative</u> transport in different channels: a very important characteristic, whose consequences have not been realized till now

These differences among instability types are a consequence of fundamental differences in mode physics: what they are

We interpret multiple experimental observations of transport through these characteristic signatures of potential instabilities

We conclude, turbulent energy transport is dominated by Micro-Tearing Modes (MTM) and Electron Temperature Gradient modes

Whereas, MHD-like modes (e.g. KBM) may dominate density transport

The "transport fingerprints"

- <u>Uniquely different physics of these modes leads to their "fingerprints", by using:</u>
 - **Basic analytic kinetic theory**
 - Gyrokinetic simulation

MODE:	χ _i /χ _e	D _e / χ _e	D _{Impurity} χ _e	Inward particle pinches	Shear Sup- pressed?	
MHD-like (e.g. KBM)	~1	~2/3	~2/3	No	NO	
МТМ	~0	~0	~0	No	NO	
ETG	~0	~0	~0	No	NO	
ITG/TEM	≥ 1	-0.2 - 1	~ 1	Sometimes	Usually	

 Since velocity shear is strong in a pedestal, only a few types of modes can escape shear suppression (the above)

4

Note: $D \equiv \Gamma / (dn/dx)$ $\chi \equiv Q / (dT/dx)$

Preview of talk

- **A.** We'll consider experimental observations in several channels, and apply the transport fingerprint concept
- **A.** Derivation of fingerprints
- **Detailed gyrokinetic simulations (GENE) of two DIII-D discharge pedestals** Β.
 - **Corroborates the general conclusions in A and B** •
- **C.** The regime of weak velocity shear suppression of ITG/TEM modes in pedestals with low ρ^* (as in burning plasmas)

Experimental observations of pedestal transport in several channels, and

Conclusions from applying transport fingerprints

- T_i channel
- n_{Impurity} channel
- n_e channel
- **Transport effects from RMPs**

6

Transport channel T_i: Observed ion heat transport is often neoclassical

- ASDEX finds¹ (also DIII-D²)
 - 1) $\chi_i \approx \chi_{neo}$
 - But often $\chi_e \sim \chi_i$ 2)
 - In this case $\chi_e >> |\chi_i \chi_{neo}|$ 3)
 - Recall: MHD-like modes: comparable turbulent χ_i and χ_e
 - This is inconsistent with MHD-like modes • (e.g. KBM) dominating the energy losses
 - Only modes causing mainly χ_e could dominate turbulent energy losses: MTM and/or ETG IFS

²J. D. Callen, R. J. Groebner, et. al., Nucl. Fusion 50 (2010) 064004

¹E. Viezzer et. al. Nucl. Fus. (2017)

Transport channel n_{Impurity}: Observed impurity transport is often neoclassical

Observed Inter-ELM impurity transport is roughly neoclassical (accumulation)

- Quantitatively agreement on ASDEX¹, C-mod²
- Other tokamaks: qualitative agreement

ELMs are typically needed to expel impurities

- **MOST energy**

IF inter-ELM MHD-like modes (e.g. KBM) dominated energy losses – *they* would expel the impurities

So that expulsion would NOT require ELM MHD-like modes

SO: Inter-ELM energy transport must be due instabilities that cause low impurity outward diffusivity compared to energy transport (low D_7/χ)

SO AGAIN: MTM and ETG are responsible for most energy losses- not KBM- when impurities are roughly neoclassical

¹T. Pütterich, et. al., J Nucl. Mater 415 (2011) ²T. Sunn et. al. (2000) Nucl. Fusion 40

Inter-ELM transport INSUFFICIENT • BUT, Inter-ELM transport expels

Transport channel n_e : Electron density source is "small"

- The D_{e}/χ is estimated to be small on
 - **JET**¹⁻³
 - **DIIID**^{4,5}
 - ASDEX^{6,7}

Uses D_e from ionization source and particle balance, and χ from power balance

- For JET, DIII-D cases: $D_e/(\chi_e + \chi_i) \sim 0.07 0.1$
 - AGAIN: Too small to be consistent with MHD-like modes dominating power loss
 - AGAIN: Only consistent with ETG and/or MTM dominating energy losses; or ITG/TEM if they are not suppressed (their D_{a}/χ can be small as well)
 - ¹F. Koechl et. al. Nucl. Fusion (2017) ²L. Horvath, et. al., PPCF (2018) ³Kotschenreuther,, C. Maggi, C. Giroud, V. Parail, A. Chankin, et. al., submitted to NF, in revision
- ⁴J. D. Callen et. al.Nucl. Fusion (2010) ⁵G.D. Porter et. al. Phys. Plasmas (1998) ⁶L.D. Horton et. al. Nucl. Fusion (2005) ⁷A.. V. Chankin et. al. PPCF (2006)

Ionization source is estimated from JINTRAC, EDGE2-D, SOLPS, UEDGE

- A remarkably consistent pattern has emerged from diverse transport channels- MTM and/or ETG dominate energy losses (perhaps ITG/TEM on JET), not MHD-like modes (e.g. KBM) (!!)
- Why is this conclusion found so consistently?
- A single ansatz can explain these results
- PLUS, it gives conceptual CONSISTENCY with EPED: KBM may enforce marginal stability of pressure profiles in inter-ELM phase
- Let us consider a thought experiment.....

10

Thought experiment: time sequence of inter-ELM pedestal evolution

ANSATZ: source term for n_e is relatively much smaller than for energy

As pedestal steepens in the inter-ELM phase, eventually an MHD-like mode (KBM) becomes unstable, and creates comparable diffusivity in all channels

Since n_e is weakly driven, n_e profile is modified first and most strongly (small D_e suffices)

- The pressure would be forced to marginal stability by modification of the density profile
- <u>T profiles weakly affected</u>: MHD induced $\chi \sim D_e$ would be small compared to power balance requirement
- <u>Relatively</u> insignificant energy transport from MHD-like modes
- T_e profile would continue to evolve until MTM/ETG saturate it
- T_i would be saturated by neoclassical χ plus Coulomb equilibration to e⁻¹
 - And the MHD impurity diffusivity D_{Impurity} ~ D_e is small: Impurities still ~neoclassical
- If ITG/TEM are not suppressed, they can also saturate T

Occam's razor: all previous observations follow, and are consistent with the EPED model, from that single ansatz

Explains experimental observations

- In <u>diverse</u> channels: T_i, n_{Impurity}, n_{electron}
- And, as we'll indicate: Resonant Magnetic Perturbation transport

Also gives consistency with EPED: MHD-like modes (like KBM) CAN enforce marginal stability of the inter-ELM pressure profile

- And yet <u>NOT BE</u> the dominant <u>energy loss mechanism</u>
- <u>MHD-like modes could dominate the density profile evolution</u>
- MTM/ETG (or also ITG/TEM for JET) would dominate energy losses

It is very hard to arrive at any other scenario that is qualitatively consistent with all the experimental observations and elements above

Analytical and numerical approaches used to obtain the fingerprints

Using basic kinetic theory: fingerprints of electromagnetic modes are analytically computed

- Drift kinetic equation is ordered for steep pedestal gradients
 - Realistic pedestal conditions included (geometry, full kinetic effects, etc.)

In the steep gradient region: ω^* is much larger than many other relevant rates, leading to *important simplifications*

- Quasi-linear **ratios** of transport in different channels computed
- Results for ratios are independent of details of mode structure

When δE_{\parallel} is small (MHD-like, as in KBM)

- All species have similar diffusivities and <u>no pinches</u>
- δE_{\parallel} small follows when ω in the <u>plasma</u> frame is different from ω_e^*
- These conditions apply to plasma MHD-like instabilities, i.e. KBM (and RMPs)

Analytical estimates are corroborated by GENE runs for actual experimental pedestals of JET, **DIIID, C-mod (both quasi-linear and non-linear)**

Observed transport response to RMPs - further support for conclusions

RMPs, surprisingly, are just like an MHD mode(!!) in the STEEP GRADIENT region. **Analysis shows:**

- \Rightarrow Self-consistent plasma response $\delta \phi$ will give $\delta E_{\parallel} \sim 0$ for RMP (Steep gradient region only)
- ⇒ Transport directly induced by RMP has MHD-like fingerprint

RMP may be considered as an externally driven version of MHD-like mode

• Experiments find: RMP causes mainly density transport (pump-out)

- Reduces the DENSITY gradient in the steep gradient region
- DOES NOT reduce or limit the TEMPERATURE gradient

Consistent with our preceding analysis:

MHD-like modes do not cause primarily energy transport in the steep gradient region

Rather, they cause, mainly, density profile modification

14

Application of these concepts, with detailed gyrokinetic simulations using GENE, to pedestals on two DIII-D shots

Quasi Coherent Fluctuations observed on DIII-D 153764*

- In e⁻¹ direction in lab frame
- Doppler shift (from measured E_r) relatively small, so
- In plasma frame, QCF ω is in electron direction, magnitude ~ ω_e^*
- Consistent with MTM, not KBM

- Local linear gyrokinetic GENE results:
- MTM robustly unstable, also some **KBM**

Including local Doppler shift, frequencies in lab frame of these:

- KBM $\omega \sim 4 \times 100 \text{ low}$
- MTM ω ~ 2 x too high
- Nonlinear effects bring MTM ω closer to observations

*A. Diallo, R. J. Groebner, et. al. Phys. Plasmas 22, 056111 (2015)

Inter-ELM evolution of profiles on DIII-D153764*

*A. Diallo, R. J. Groebner, et. al. Phys. Plasmas 22, 056111 (2015)

DIII-D 153764: Global MTM instability spectra match QCF

Toroidal n instability spectrum:

- Always isolated, sparse instabilities in n
- This should lead to coherent fluctuations just • as observed (rather than broadband)
- Actual n numbers of instability are very sensitive to small profile changes
- Mod 5 within ~ 10% of measured QCF k_A
- Linear frequencies still ~ 2 x higher

DIII-D 153764 Nonlinear Global MTM Simulations

Mode Type

MTM (global linear)

Frequency (kHz) -350

DIII-D 153764 nonlinear simulations (cont.)

- Heat loss from ETG and MTM varies by factor of several for the different profile modifications
- Mod 5 case close to matching power balance
- ETG + MTM give ~ 2 MW losses
- Close to experimental loss ~ 3 MW

DIIID 98889 results¹

Published transport analysis & spectrogram:

- χ_i ~ neoclassical
- $\chi_e \sim 2\chi_i$
- $D_e \sim is$ order of mag. smaller than χ_e

• Spectrogram: two QCF f ~ 200-300 kHz (e⁻¹ direction)

GENE results (global)

- Qualitatively similar to 153764:
- MTM are only significant instabilities, and roughly consistent with observations
- Nonlinear MTM:
 - Give ~ 2.6 MW <u>electron</u> heat transport, roughly similar to 1.9 MW from transport analysis
 - Low instability induced transport in <u>all other channels</u>
 - Two QCF with freq ~ 1.5 x observed (e⁻¹ direction)

¹J. D. Callen, R. J. Groebner, et. al., Nucl. Fusion 50 (2010) 064004

Only consistent with MTM/ETG, not KBM

WE TURN NOW TO ITG/TEM MODES

In past publications, our GENE simulations find that these can lead to excessive energy transport in the pedestal of ITER and JET-ILW

¹M. Kotschenreuther, D.R. Hatch, S. Mahajan, Nucl. Fusion 57 (2017) 064001 ²D.R. Hatch, M. Kotschenreuther, S. Mahajan, et. al., Nucl. Fusion 57 (2017) 036020 ³Chang et al Nucl. Fusion **57** (2017) 116023

Pedestal ITG simulation results agree with the analytic theory

of velocity shear suppression of Zhang & Mahajan*

- The transition from strong to weak shear suppression is described by this analytic theory
- Agreement between theory and simulations is excellent
- This corroborates simulation results¹⁻³:
 - 1) ITER is in the regime of weak shear suppression
 - Most present experiments are in the 2) regime of strong suppression
 - 3) JET-ILW on borderline

Hence, ITER may need to operate in regimes of weak ITG/TEM instability

*Y. Z. Zhang and S. M. Mahajan, Physics of Fluids B, 5, (1993) 2000

¹M. Kotschenreuther, D.R. Hatch, S. Mahajan, Nucl. Fusion 57 (2017) 064001 ²D.R. Hatch, M. Kotschenreuther, S. Mahajan, et. al., Nucl. Fusion 57 (2017) 036020 ³Chang et al Nucl. Fusion **57** (2017) 116023

22

GENE simulations (dots) of shear suppression of ITG in a pedestal compared to the analytic model (line)

Regimes of weak ITG/TEM instability in pedestals

- Pedestal ITG/TEM are dramatically stabilized by density gradients (& impurities, high β_{pol})
- This is quite different from core-like modes
- Have developed analytic Simplified Kinetic Model (SKIM) for this regime, which agrees with **GENE**
- It shows how the pedestal ITG/TEM is in a different regime from the core, even linearly, leading to the possibility of stabilization
- **Encouraging nonlinear simulations show** the linear stabilization effects are robust

Fraction of pressure gradient from density gradients

Pedestal Geometry, Pedestal Gradients

Conclusions

- Transport fingerprint concept has been developed
- **Diverse observations of pedestal transport imply that:**
 - Inter-ELM Energy losses dominated by MTM and/or ETG or drift modes
- Detailed gyrokinetic analysis on two pedestals on DIII-D has, for the first time, identified QCF seen in magnetic probes as MTM instabilities
- QCF from MTM, like those observed, can lead to large energy transport
- Analytic models of velocity shear suppression agree well with simulations
- **Regimes of weak ITG/TEM instability have been found and understood** analytically; these may be needed for H-mode burning plasmas

Back-up slides

ACKNOWLEDGEMENTS

• This work has been a collaboration between several institutions

tifs

This material is based upon work supported by the U.S. Department of Energy grant DE-FG02-04ER54742, the National Energy Research Scientific Computing Center and the Texas Advanced Computing Center.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the EURATOM research program 2014-2018 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

This presentation is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, and has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this presentation, or allow others to do so, for United States Government purposes.

Gyrokinetic simulations with GENE confirm the analytic theory

Discharge	Simulati	Mode	 b ·δE	D_e/χ_e	D_Z/χ_e	χ_i/χ_e	<ω _{µl} >	Q _{ES}	n
	on Type	Туре					< w *>	Q _{EM}	
JET-C 78697	Gl. Lin.	MHD	0.03	0.89	0.43	0.44	5.21	1.3	4
	Gl. Lin.	MTM	0.41	0.01	0.01	0.01	-0.65	0.06	8
JET-ILW 82585	Gl. Lin.	MTM	0.43	0.01	NA	0.01	-0.92	0.2	14
C-mod 1120815027	Gl. Lin.	MHD	0.18	0.80	0.74	1.05	0.57	8.4	11
	Gl. NL	MHD		0.67	0.50	0.86		22.	11
	Gl. Lin.	MTM	0.43	0.04	0.05	0.07	-1.65	0.13	10
DIII-D 153764	CG Lin.	MTM	0.51	0.01	0.01	0.01	-0.94	0.01	14
	CG NL	MTM		0.01	0.01	0.01		0.01	14
	Gl. Lin.	MHD	0.11	0.78	0.77	1.29	0.35	5.78	26
	Loc. Lin.	MHD	0.18	0.70	0.71	1.00	0.01	340.	26
DIII-D 98889	Gl. Lin.	MTM	0.56	0.04	0.06	0.08	-0.71	0.41	18
	Gl. NL	MTM		0.02	0.03	0.03		0.18	18
	Gl. Lin.	MHD	0.06	0.54	0.65	0.71	0.51	14.8	12

Table 1: A summary of simulation results for several experimental pedestals. MHD modes are shaded. Simulation type is either 1) Global (GI.:full profile variation) 2) taking the gradients to be constant over the pedestal using values at the mid-pedestal (CG) or 3) local linear (Loc. Lin). Simulations are either linear or nonlinear. Mode type is either MHD-like or MTM. The MTM have an electron heat flux which is strongly dominated by the magnetic contribution relative to the electrostatic one ($Q_{ES}/Q_{EM} <<1$) distinguishing them from modes where the ExB convection dominates ($Q_{ES}/Q_{EM} >1$). The average dE_{||}, is indicated by the spatial average (denoted by <...>, weighted by the absolute value of heat flux) of the difference over the sum of electrostatic and inductive fields, | **b**· dE_{||}| = <|**b**· dE_{ES} - **b**· dE_{EM}|>/(<|**b**· dE_{ES}|>+<|**b**· dE_{EM}|>). The ratio of frequency in the plasma frame w_{pl} to w* is found using the same weighed spatial average, normalized to the same weighted average of w*. For normalization of modes in the ion direction, we use w₁*, for electron directed modes, w_e*. Toroidal mode number n is also given.

Applications to JET: washboard modes

- Magnetic signals on DIII-D, ASDEX are very similar to JET washboard modes^{*}
- Washboard modes: all the characteristics of MTMs:
 - Frequency in plasma frame thought to be ~ ω^*_{e}
 - Amplitude correlates with electron energy transport •
 - Don't affect density •
 - Apparently don't limit impurity build-up: ELMs still needed for that
 - Our previous analysis of a JET-ILW discharge found that MTM plus ETG could match power balance (Hatch, • Kotschenreuther, et. al. Nucl. Fusion 56 (2016) 104003)
- Recent estimates of the density source term in several JET pedestals^{1,2} also finds that, typically, $D_{eff} \ll \chi_{eff}$
- Likely that energy losses are dominated by MTM, ETG and possibly ITG
- ITG to be considered in future paper •

¹C. P. Perez et. al. Plasma Phys. Control. Fusion 46 (2004) Also similar behavior for other JET shots we are analysing

²F. Koechl et. al. Nucl. Fusion (2017) ³F. Koechl, V. Parail, and C. Maggi, private communication

Applications of gyrokinetic picture to JET, DIII-D, C-mod, ASDEX etc.

Fig. from C. P. Perez et. al. Plasma Phys. Control. Fusion 46 (2004) Also similar behavior for shot #78697, under analysis

30

• No inward pinches: only diffusion

CAN HAVE inward particle pinch

Gyrokinetic Quasi-Linear (Q-L) theory: summary of analysis

- **Standard manipulations of DKE for linear fluctuations** •
- Very revealing to subtract out the purely convective response δf_{conv} due only to ExB drift: d δf_{conv} /dt + $\delta \mathbf{v}_{\mathsf{ExB}} \cdot \nabla \mathbf{f}_0 = \mathbf{0}$
- Obtain an exact kinetic equation for the deviation from this response

- Eq(1) implies that deviations from purely convective response are driven only by δE_{\parallel} and a magnetic drift term
- For steep pedestal gradients, and frequencies ~ ω^* , the drift term is relatively small by ~ L_{ped}/R (very small)
- Hence, MHD-like modes with small δE_{\parallel} have a purely convective response in a pedestal • Insertion of δf_{conv} into the expression for QL fluxes shows purely diffusive flux with comparable
 - diffusivity for all species

What about primarily electrostatic (ES) modes?

- A primarily electrostatic mode, necessarily, has a small inductive *inductive* δE_{\parallel} , so δE_{\parallel} is not small
- Transport channels can be very different for ES modes (e.g. ITG/TEM)

- The arguments leading to the criterion for small δE_{\parallel} can be obviated for such modes in a pedestal when the passing electrons are highly adiabatic (so δj_{\parallel} is small even when δE_{\parallel} is not) that they do not produce much current
 - In other words, the resonant layer is a very small, and relatively little transport happens from that region, unlike electromagnetic modes
- Such ES modes typically have much lower growth rate than KBM, so that velocity shear in a pedestal can often suppress them (JET-ILW is one of the exceptions, as is the low velocity shear I-mode regime in C-mod, and ITER woiuld be an exception too)

Basic consequence of the DKE and quasi-neutrality:

- For pedestal parameters, there are two possibilities for modes with strong magnetic perturbations:
- 1) $E_{\parallel} \approx 0$: an MHD-like mode
 - All transport channels have similar diffusivity
 - This pertains if ω is NOT close to ω_e^*
- $\omega \approx \omega_{\rho}^{*}$; a specific ω is needed 2)
 - Transport channels can be very different: mainly electron heat
 - This is the situation for an MTM
- These analytic conclusions are corroborated by many GENE simulations for pedestals on multiple machines
- When magnetic fluctuations are observed in a pedestal, it is of great importance whether $\omega \approx \omega_{e}^{*}$ in the plasma frame or not: bears strongly on which transport channels should be affected

These are algebraic consequences of the DKE

- Theses results do not depend very strongly on the spatial dependencies of the field fluctuations
- They do not depend on whether the magnetic perturbation has a contribution from currents external to the plasma (RMP)
- They are, primarily, sensitive to the frequency in the plasma frame ω_{pl} , and, whether δE_{\parallel} is small in the plasma frame

The transport fingerprint follows from Drift Kinetic Quasi-Linear (Q-L) theory

- We apply a steep gradient ordering to the
- Gyrokinetic Q-L theory: reasonable estimate for pedestal modes
 - Q-L quite successful for relative transport channels in core turbulence

We use the drift kinetic equation (DKE)

- Allows for strong equilibrium variations over the fluctuation scales within a formally rigorous ordering
- Requires small Larmor radius (in total B) compared to the pedestal gradient scales L_{ped} and fluctuation scales — satisfied in mid pedestal to top pedestal (marginal near separatrix)

36

INSTABILITIES AND TRANSPORT IN H-MODE PEDESTALS

Candidates for residual transport found in gyrokinetic simulations (by many authors):

 We have found that the instability fingerprint concept is strongly anchored in the fundamental analytical properties of the drift kinetic equation

It has also been verified by our gyrokinetic simulations

WE TURN NOW TO ITG/TEM MODES

- Gyrokinetic simulations (and analytic models, next slide) find that shear • suppression of these modes can fail when:
 - ρ^* is reduced velocity shear decreases (velocity shear ~ ρ^*)
 - low Z impurities are reduced
- At the low ρ^* of ITER, simulations find that they cause large pedestal transport^{1,2}, due to the low velocity shear ~ ρ^*
- Also predicted to be significant in high field JET
- We consider these modes next..... •

¹M. Kotschenreuther, D.R. Hatch, S. Mahajan, Nucl. Fusion 57 (2017) 064001 ²D.R. Hatch, M. Kotschenreuther, S. Mahajan, et. al., Nucl. Fusion 57 (2017) 036020 ³Chang et al Nucl. Fusion **57** (2017) 116023

