

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ»

PROGRESS IN DESIGN OF DEMO-FNS HYBRID FACILITY

<image>

Divertor FW VV support Maintenance

Development of a fusion-fission hybrid
facility based on superconducting tokamak
DEMO-FNS continues in Russia for
integrated commissioning the steady-state
and nuclear fusion technologies at the
power level up to 40 MW fusion and 400
MW fission reactions.

Aspect ratio R/a, m	3.2/1
Toroidal magnetic field	5 T
Electron/ion	
Temperature, keV	11.5/10.7
Beta normalized β _N	2.1
Plasma current I _p ,	5 MA
Neutron yield G _N	1.3·10 ¹⁹ /s
Neutral injection power 30 MW	
ECR heating power	6 MW
Neutron wall loading ~ 0.2 MW/m ²	
Lifetime n _o fluence 🔷 🏹	2 MWa/m ²
Consumed/	
generated power	200 MW

Yu.S. Shpanskiy et al. FIP/P7-7

•Simulations showed that maximum total fusion power is achieved when tritium fraction is equal to 0.7.

•The FW load-bearing unit was developed capable of withstanding dynamic forces.

•The NB injector geometry for DEMO-FNS is chosen and optimized for the reduced dimensions of injector window to 0.4x0.8 m².

•Analyses of the interaction of DEMO-FNS facility with the nuclear fuel cycle of Russia's nuclear power industry was performed.

Shpanskiy_YS@nrcki.ru