Fusion Energy Development Applications **Utilizing the Spherical Tokamak** and Associated Research Needs and Tools

27th IAEA Fusion Energy Conference - IAEA CN-258

Paper Number OV/P-6

J.E. Menard, et al.

```
PPPL PRINCETON
PLASMA PHYSICS
LABORATORY
```

PRINCETON UNIVERSITY

Possible next-step ST facilities

Collaborative and international effort including 23 co-authors

J.E. MENARD, R. MAJESKI, M. ONO	Y. NAGAYAMA
Princeton Plasma Physics Laboratory	Nihon University
Princeton, NJ USA	Tokyo, Japan
N.N. BAKHAREV, V.K. GUSEV	Y. ONO, Y. TAKASE
Ioffe Institute	The University of Tokyo
Saint Petersburg, Russia	Tokyo, Japan
M. GRYAZNEVICH, D. KINGHAM, S. MCNAMARA, P. THOMAS	M. REINKE
Tokamak Energy Ltd	Oak Ridge National Laboratory
Oxfordshire, United Kingdom	Oak Ridge, TN, USA
K. HANADA	K. TOBITA
Kyushu University	National Inst. for Quantum & Radiological Science & Technology
Fukuoka, Japan	Aomori, Japan
J. HARRISON, B. LLOYD	Z. GAO
Culham Centre for Fusion Energy (CCFE)	Tsinghua University
Oxfordshire, United Kingdom	Beijing, China
Y.S. HWANG	F. ALLADIO
Seoul National University	ENEA
Seoul, South Korea	Rome, Italy
B. LIPSCHULTZ, H. WILSON (also CCFE)	R.J. FONCK
University of York	University of Wisconsin-Madison
York, United Kingdom	Madison, WI, USA
27 th IAEA Fusion Energy Conference	- October 22–27, 2018 in Ahmedabad, India

17 existing/near-term international ST facilities

MAST-U, UK GLOBUS-M2, Russia Kazakhsta

Abstract / Overview

The fusion community is assessing the suitability of the ST for applications to advance fusion energy including the development of:

- Solutions for the plasma-material-interface (PMI) challenge 1.
- Fusion neutron source / Fusion-fission hybrid systems 2.
- Fusion components capable of withstanding high fusion neutron flux/fluence 3. including breeding blankets (Component Test / Fusion Nuclear Science Facility)
- Demonstrating electricity break-even from a pure fusion system (Pilot Plant) 4.
- Electricity production at industrial levels in modular fusion power plants 5.
- Electricity production at industrial levels in larger-scale fusion power plants 6.

This range of fusion energy development applications utilizing the ST is described, common application-driven research needs discussed, upcoming and recently achieved ST facility capabilities and relevant highlights described, and near-term prioritized ST research directions supporting longer-term fusion energy development applications presented.

27th IAEA Fusion Energy Conference - October 22–27, 2018 in Ahmedabad, India

Near-term STs support wide MHD stability space spanning nearly all proposed next-step ST configurations

Exception: $\beta_N = 7$ of JUST exceeds expected near-term capabilities

• Additional studies needed to assess MHD stability of JUST scenarios

O MAST-A-HSE

⊠ NSTX-A-HSE

NSTX-A-HSE

0.5

🔀 NSTX-A-HSE

□ MASTU-G-HNI

0.4

Existing / Near-term ST Parameters	QUEST achieved	QUEST goal	Globus-M achieved	Globus-M2 goal	ST40 goal [Programs 1-3]	ST40 goal [Future Programs]	MAST achieved [High stored energy]	MAST-U goal [High non- inductive]	MAST-U goal [High stored energy]	NSTX achieved [High stored energy]	NSTX-U goal [100% non- inductive, H ₉₈ =1]	NSTX-U goal [100% non- inductive, H _{ST} =1, high-power]	NSTX-U goal [High stored energy, high power]	NSTX-U goal [High stored energy, high power, low f _{GW}]	Next-step ST Parameters	FNS-ST [Kurchatov 2011]	ST-CTF] [CCFE 2008]	Compact hybrid FNS / Globus-3 [loffe 2018]	ST-FNSF [R=1m, PPPL 2016]	ST-FNSF [R=1.2m, ORNL 2009]	ST-FNSF [R=1.7m, PPPL 2016]	ST-E1 Modular Power Plant [Tokamak Energy 2018]	Low-A HTS Pilot Plant [PPPL 2016]	JUST [Japan 2012]	VECTOR [Japan 2002]	SlimCS [Japan 2007]
Device - Achieved/Goal - Scenario	QUEST-A	QUEST-G	GlobusM-A	GlobusM2-G	ST40-G-P13	ST40-G-FP	MAST-A-HSE	MASTU-G-HNI	MASTU-G- HSE	NSTX-A-HSE	NSTXU-G-HNI- H98	NSTXU-G-HNI- HST-HP	NSTXU-G-HSE- HP	NSTXU-G-HSE- HP-LOWN	Device - Achieved/Goal - Scenario	FNS-ST	ST-CTF- CCFE	Globus3-IOFFE	ST-FNSF- PPPL-1m	ST-FNSF-ORNL- 1.2m	ST-FNSF-PPPL- 1.7m	ST-E1-TE	HTS-Pilot-PPPL	JUST	VECTOR	SlimCS
Aspect ratio A	1.7	1.7	1.5	1.5	1.7	1.7	1.3	1.56	1.56	1.45	1.78	1.73	1.7	1.7	Aspect ratio A	1.66	1.55	1.9	1.7	1.5	1.7	1.8	2	1.8	2.3	2.6
Major radius R ₀ [m]	0.68	0.68	0.34	0.34	0.4	0.4	0.85	0.82	0.82	0.89	0.94	0.94	0.94	0.94	Major radius R ₀ [m]	0.5	0.81	1	1	1.2	1.7	2	3	4.5	3.2	5.5
Minor radius a [m]	0.40	0.40	0.23	0.23	0.24	0.24	0.65	0.53	0.53	0.61	0.53	0.54	0.55	0.55	Minor radius a [m]	0.30	0.52	0.53	0.59	0.80	1.00	1.11	1.50	2.50	1.39	2.12
Plasma elongation κ	1.2	2.5	2	2	2.5	2.5	2.1	2.5	2.5	2.5	2.78	2.76	2.75	2.75	Plasma elongation κ	2.75	2.4	2.5	2.75	3.1	2.75	3	2.5	2.5	2.35	2
Plasma triangularity δ	0.2	0.68	0.5	0.3	0.35	0.35	0.5	0.5	0.5	0.6	0.5	0.5	0.5	0.5	Plasma triangularity δ	0.5	0.4	0.7	0.5	0.4	0.5	0.5	0.6	0.35	0.5	0.35
Plasma current l _P [MA]	0.01	0.3	0.25	0.5	2	2	1.2	1	2	1.33	0.87	1.4	2	2	Plasma current l _P [MA]	1.5	6.5	3.5	7.2	8.2	11.5	10	12	18	14.6	16.7
Vacuum toroidal field B_T (at R_0 [T])	0.133	0.25	0.50	1.00	3.0	3.0	0.52	0.78	0.78	0.48	1.00	1.00	1.00	1.00	Vacuum toroidal field B_T (at R_0 [T])	1.50	2.60	3.00	3.00	2.18	3.00	4.00	4.00	2.36	5.00	6.00
Normalized current $I_N = I_P / a B_T$	0.19	3.00	2.21	2.21	2.83	2.83	3.53	2.44	4.88	4.51	1.65	2.58	3.62	3.62	Normalized current $I_N = I_P / aB_T$	3.32	4.78	2.22	4.08	4.70	3.83	2.25	2.00	3.05	2.10	1.32
Toroidal beta β _T [%]	0.1	10	5.5	10	4.5	4.5	11.5	9.5	18	25	6.6	15.5	20	20	Toroidal beta β _T [%]	17	16	6	18	18	16.5	11	8	22	12.5	5.7
Normalized beta β_N	0.53	3.33	2.5	4.5	1.6	1.6	3.3	3.9	3.7	5.5	4.0	6.0	5.5	5.5	Normalized beta β_N	5.12	3.34	2.71	4.41	3.83	4.30	4.89	4.00	7.21	5.96	4.33
Kink safety factor q*	19.09	3.55	3.78	3.78	3.76	3.76	2.95	4.76	2.38	2.77	7.44	4.83	3.48	3.48	Kink safety factor q*	3.88	2.28	4.30	3.09	3.76	3.28	6.17	4.53	3.30	3.38	3.65
Internal inductance l _i	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.45	0.6	0.67	0.5	0.5	Internal inductance l _i	0.7	0.6	0.7	0.55	0.5	0.55	0.5	0.6	0.7	0.7	0.7
Bootstrap fraction f _{BS}	0.01	0.2	0.25	0.37	0.35	0.35	0.2	0.17		0.35	0.67	0.67	0.48	0.48	Bootstrap fraction f _{BS}	0.3	0.4	0.3	0.81	0.49	0.76	0.98	0.7	0.99	0.78	0.75
External current drive (CD) fraction							0.15	0.71		0.15	0.33	0.33	0.18	0.18	External current drive (CD) fraction	0.70	0.60	0.70	0.19	0.51	0.24	0.02	0.30	0.01	0.22	0.25
Non-inductive CD fraction f _{NICD}							0.35	0.88	0.47	0.50	1.00	1.00	0.66	0.66	Non-inductive CD fraction f _{NICD}	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Greenwald fraction f _{GW}	0.3	0.5	1.00	0.30	0.31	0.31	0.40	0.23	0.25	0.80	0.72	0.71	0.70	0.25	Greenwald fraction f _{GW}	0.2	0.24	0.15	0.8	0.3	0.8	0.9	0.8	1.5	0.83	0.98
Fast ion fraction W _{fast} / W _{tot}	0.00	0.10	0.05	0.20	0.05	0.05	0.40	0.60	0.30	0.15	0.26	0.18	0.09	0.25	Fast ion fraction W _{fast} / W _{tot}	0.40	0.10	0.50	0.09	0.24	0.10	0.10	0.10	0.10	0.23	0.22
H-mode multiplier H ₉₈		1.2	1.3	1.3	1.4	1.4	1	1	1	1.2	1	1.3	1.16	1.16	H-mode multiplier H ₉₈	1	1.3	1	1.25	1.5	1.25	1.5	1.8	1.8	1.44	1.3
Ohmic heating power P _{OH} [MW]	0	0	0.65	0.6	0	0	0	0	0	0	0	0	0	0	Ohmic heating power P _{OH} [MW]	0	0	0	0	0	0	0	0	0	0	0
Aux NBI heating & CD power P _{NBI} [MW]	0	2	1	2	2	2	3	7.5	7.5	6.3	10.2	15.6	15.6	15.6	Aux NBI heating & CD power P _{NBI} [MW]	10	44	15	60	31	85	10	50	2	60.4	100
Aux RF heating & CD power P _{RF} [MW]	0.05	1	0.2	1	0	2	0	0	0	0	0	0	0	4	Aux RF heating & CD power P _{RF} [MW]	5	0	6	0	0	0	12	0	0	0	0
Total heating & CD power P _{aux} [MW]	0.05	3.00	1.85	3.60	2.00	4.00	3.00	7.50	7.50	6.30	10.20	15.60	15.60	19.60	Total heating & CD power P _{aux} [MW]	15.00	44.00	21.00	60.00	31.00	85.00	22.00	50.00	2.00	60.40	100.00
Volume [m [°]]	2.37	4.09	0.55	0.55	0.83	0.83	11.8	8.5	8.5	12.6	11.6	11.9	11./	11.7		1.85	8.0	10.4	14.1	34.9	69.4	141	254	1057	221	/68
Volume-averaged electron density [10 ²⁰ m ⁻⁰]	0.01	0.26	1.36	0.82	3.14	3.14	0.31	0.23	0.51	0.79	0.63	0.94	1.28	0.46	Volume-averaged electron density [10 ²⁰ m ²]	0.93	1.60	0.53	4.66	1.08	2.58	2.04	1.20	1.21	1.75	1.02
Average I _e [kev]		0.29	0.13	1.33									1.93	4.57	Average I _e [kev]				4.3Z				13.20 6 2E 02		19.73	
Normalized electron collisionality v_e^{-1} (Sauter)	1.4E+00	3.3E-01	3.3E+00	2.3E-02	1.7E-02	7.7E-02	3.7E-02	2.0E-02	9.7E-03	9.8E-02	1.9E-01	0.1E-02	5.3E-02	3.7E-03	Normalized electron collisionality v_e^{-1} (Sauter)	0.9E-03	1.9E-03	2.2E-03	3.7E-02	2.9E-03	1.4E-02	5.47	0.2E-03	0.0E-03	4.1E-03	4.2E-03
Electron toroldal beta β _{T-e} [%]	0.03	4.91	2.00	4.39	120	120	02	2.10	62	71	2.00	0.99	9.97	0.43 57	Thermal ion 1/e*	17	0.01	1.91	9.01	118	0.17	268	3.99	328	308	2.09
Total plasma stored energy W [M.I]	2 50E-05	0.015	0.004	0.03	0.20	0.20	0.22	0.29	0.56	0.43	0.46	1 10	1 40	1 40	Total plasma stored energy W [MJ]	0.42	52	34	13.7	17.8	61.5	148	194	773	412	941
Fusion power [MW]	0	0	0	0	0	0	0.22	0	0	0	0	0	0	0	Fusion power [MW]	0.5	35	50	60	75	174	420	510	1900	2503	2950
Fusion Gain Q _{DT}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Fusion Gain Q _{DT}	0.03	0.8	2.4	1.0	2.4	2.0	19	10	950	41	30
Avg. DT neutron wall load [MW/m ²]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Avg. DT neutron wall load [MW/m ²]	0.03	0.91	1.01	1.00	0.69	1.00	1.71	1.21	1.80	6.31	3.25
P _{heat} / S [MW/m ²]	0.00	0.15	0.38	0.75	0.28	0.57	0.08	0.23	0.23	0.15	0.25	0.37	0.37	0.46	P _{heat} / S [MW/m ²]	1.23	1.66	0.78	1.50	0.53	0.86	0.54	0.45	0.45	1.77	0.95
Net electric output [MWe]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Net electric output [MWe]	0	0	0	0	0	0	125	100	800	1000	1000
Number of divertors	1	2	2	2	2	2	2	2	2	2	2	2	2	2	Number of divertors	2	2	2	2	2	2	2	2	1	2	1
Fraction of SOL power to outer divertor(s)	0.65	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	Fraction of SOL power to outer divertor(s)	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.65	0.8	0.65
Core radiation fraction	0.02	0.4	0.5	0.5	0.3	0.3	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	Core radiation fraction	0.3	0.4	0.3	0.5	0.7	0.5	0.6	0.7	0.5	0.5	0.3
P _{SOL} [MW]	0.05	1.80	0.93	1.80	1.40	2.80	2.40	6.00	6.00	4.41	7.14	10.92	10.92	13.72	P _{SOL} [MW]	10.57	30.60	21.70	36.00	13.80	59.90	42.40	45.60	191.00	280.50	483.00
Estimated B _{p-omp} [T]	0.01	0.11	0.19	0.38	1.21	1.21	0.30	0.27	0.54	0.31	0.21	0.34	0.48	0.48	Estimated B _{p-omp} [T]	0.65	1.84	0.95	1.61	1.21	1.51	1.09	1.14	1.03	1.58	1.36
Eich λ_a [mm]	122.1	8.21	5.04	2.63	0.87	0.85	3.54	3.55	1.88	3.28	4.19	2.77	2.04	2.03	Eich λ_{q} [mm]	1.49	0.59	1.02	0.65	0.91	0.70	0.93	0.86	0.98	0.58	0.65
Eich q _{leom} [MW/m ²]	0.52	23	39	144	300	608	40	161	201	77	233	360	380	479	Eich q _{⊪om} [MW/m ²]	980	3247	2047	3428	708	3251	2393	1896	5119	16111	34005