Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup

M.W. Bongard

G.M. Bodner, M.G. Burke, R.J. Fonck, J.L. Pachicano, J.M. Perry, C. Pierren, J.A. Reusch, A.T. Rhodes, N.J. Richner, C. Rodriguez Sanchez, C.E. Schaefer, and J.D. Weberski

27th IAEA Fusion Energy Conference

Gandhinagar, India Presentation EX/P6-34 25 October 2018

Layout

12:1 scale

Panel size: A0 Portrait (0.841 m x 1.189 m)

US Letter 8.5 x 11"

Recommended size per IAEA 110 cm x 85 cm (HxW)

Research on the A ~ 1 PEGASUS ST is Advancing the Physics and Technology Basis of Local Helicity Injection Non-Solenoidal Startup

Non-Solenoidal $I_p = 0.2$ MA Plasma via LHI ($I_{ini} \le 8$ kA)

- Solenoid-free startup desirable for ST, AT reactors
- · LHI is promising method to accomplish this goal
 - Edge current extracted from injectors at boundary
 - Relaxation to tokamak-like state via helicity-conserving instabilities
 - Global current limits from Taylor relaxation, helicity balance
 - $-\,$ Hardware retractable prior to nuclear phase in reactor
- Routinely used for startup on PEGASUS

A Growing Understanding of Physics and Engineering Issues in LHI Informs its Application to Next-Step Machines

LHI Physics Models

- Global I_p limits:
 - Taylor relaxation

 $I_p \le I_{TL} \sim \sqrt{I_{TF} I_{inj} / w}$

- Helicity conservation

 $V_{LHI}\approx A_{inj}B_{T,inj}V_{inj}/\Psi$

• Predictive power balance: $I_p(t)$

 $I_p[V_{LHI} + V_{IR} + V_{IND}] = 0 ; I_p \le I_{TL}$

- 3D resistive MHD / NIMROD
 - Initial relaxation
 - Role of reconnection

Reconnecting LHI Current Stream

M.W. Bongard, IAEA FEC 2018

- Helicity injector source design
 - $-I_{inj}, w: \text{set } I_{TL} \geq I_p$
 - $N_{inj}A_{inj}V_{inj}$: attain / sustain I_p
 - Armoring, limiters to minimize PMI
- Injector system geometry
 - Provide initial relaxation via near-PF null
 - Site conformal to desired plasma shape
 - Facility port access compatibility
- · Injector impedance and power systems

 $- Z_{inj} = Z_{inj}(n_{arc}, n_{edge}, \dots)$

Outstanding Issues

- Scaling to high I_p
 - Larger size
 - High B_T
 - Longer pulse
- Handoff to non-inductive CD
 LHI → OH H-mode demonstrated
- Confinement, impurities, and dissipation during LHI
- LHI current drive mechanism

Varying Injector Location Enables Study of LHI **Physics and Engineering Tradeoffs**

,		
Quantity	LFS	HFS
N _{inj}	≤ 3	≤ 2
A _{inj}	2 cm ²	4 cm ²
R _{inj}	0.70 m	0.26 m
B _{inj}	$\leq 0.08 \text{ T}$	$\leq 0.22 \text{ T}$
V _{inj}	\leq 1.5 kV	\leq 1.5 kV
I _{inj}	6 kA	8 kA
P _{inj}	9 MW	12 MW
$\frac{V_{LHI}}{V_{LHI,LFS}}$	1	3.7

Injector System Comparisons

- Extrema of feasible LHI geometries deployed in Pegasus
- Low-field-side (LFS) injection
 High-field-side (HFS) injection
 - Injectors on outboard midplane
 - High $R_{ini} \rightarrow \log V_{LHI}$
 - Dynamic shape \rightarrow strong V_{IND}
- - Injectors in lower divertor
 - Low $R_{ini} \rightarrow \text{strong } V_{LHI}$
 - Static shape \rightarrow minimal V_{IND}
- $I_p \sim 0.2$ MA attained in both geometries
 - Power supply and PMI limited

New Scenarios Developed to Transfer Between LFS \rightarrow HFS Injector Systems and Combine Strengths of Each Geometry

- LFS \rightarrow HFS handoff provides ready access to full- B_T operations with HFS injectors
 - LFS: Simpler relaxation access, lower PMI
 - HFS: Higher V_{LHI}
 - Seamless transfer between separate LHI systems
- Informs HFS high-B_T LHI system design
 - Relaxation, sustainment requirements may demand separate hardware features in higher-field machines
- Record LHI $I_p = 0.225$ MA attained
 - Peaked temperature, density pressure profiles
 - $T_e > 100 \text{ eV}, n_e \sim 1 \times 10^{19} \text{ m}^{-3}$

Recent Experiments Suggest High Frequency Magnetic Activity and Reconnection Play a Role in LHI Current Drive

- NIMROD simulations of HFS LHI reproduce features observed in experiment
 - Relaxation to tokamak-like state
 - Bursty 10's kHz n = 1 activity on LFS Mirnovs
 - Identifies helical current stream reconnection as a current drive mechanism
- M.W. Bongard, IAEA FEC 2018

- Anomalous, reconnection-driven ion heating present during LHI
 - Continuously sustains $T_i > T_e$
 - Consistent with two-fluid reconnection theory
 - $-T_i$ correlated with high frequency activity

- Internal magnetic measurements find significant high-frequency spectral content
 - ~700 kHz feature: arc source
 - Broadband continuum

Operating Regime with Significant Reduction of Large-Scale MHD and Increased I_p Found During HFS Injection Experiments

- Abrupt MHD transition can lead to improved performance
 - Low-f n = 1 activity reduced by over $10 \times$ on LFS
 - Bifurcation in I_p evolution following transition
 - Up to $2 \times I_p$ at fixed V_{LHI}
 - Linear scaling of $I_p(V_{LHI})$ in this regime at low $B_T = 0.05$ T
- Sustained discharges without n = 1 activity possible
 - Implies n = 1 mode not responsible/required for LHI current drive
- Mechanism for transition unclear, under investigation
 - n = 1 reduction interpreted as stabilization of injector streams
 - Extremely sensitive to B_T , B_Z , I_p , fueling
 - Access scales with $I_p/I_{TF} \sim 1$: min-|B| well?
 - If extensible to higher B_T , may afford simpler LHI system requirements

HFS LHI at Near-Unity A Provides Access to $\beta_t \sim 100\%$ and Magnetic Configurations with Minimum |*B*| Wells

- Access to highly-shaped, high β_t plasmas
 - Low $I_{TF} \sim 0.6 I_p$
 - $A \sim 1$: high κ , low ℓ_i , and high $\beta_{N,max}$
 - Reconnection-driven $T_i > T_e$
 - Disrupting at ideal no-wall stability limit
- High- β_t equilibria contain large min-|B| region
 - Up to 47% of plasma volume
 - Potentially favorable for stabilization of drift modes, reduction of stochastic transport
- Minimum |B| regime arises from 3 major influences
 - $B_p \sim B_T \text{ at } A \sim 1$
 - Hollow J(R)
 - Pressure-driven diamagnetism (although $\beta_p < 1$)

URANIA Experiment: Converted PEGASUS Facility for US Non-Solenoidal Development Station

- Mission: compare / contrast / combine reactor-relevant startup techniques at $I_p \sim 0.3$ MA
 - LHI, CHI, RF/EBW Heating & CD
 - Goal: guidance for ~1 MA startup on NSTX-U, beyond
- Upgrades from PEGASUS to URANIA:
 - New centerstack assembly: No solenoid magnet
 - Increase $B_T 4 \times : 0.15 \rightarrow 0.6 \text{ T}$
 - Longer pulse: $25 \rightarrow 100 \text{ ms}$
 - Improved shape control with new PF, divertor coils
 - Diagnostic neutral beam: kinetic and impurity diagnostics
 - EBW RF Heating & CD (w/ ORNL)
 - Transient, Sustained CHI (w/ Univ. Washington, PPPL)
- Engineering design underway
 - Centerstack upgrade scheduled for late 2019

URANIA Experiment

URANIA Concept Drawing

PEGASUS

URANIA

High-Stress OH Solenoid 12-turn TF Bundle

Solenoid-free 24-turn TF Bundle

