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• Solenoid-free startup desirable for ST, AT reactors

• LHI is promising method to accomplish this goal

– Edge current extracted from injectors at boundary

– Relaxation to tokamak-like state via helicity-conserving instabilities

– Global current limits from Taylor relaxation, helicity balance

– Hardware retractable prior to nuclear phase in reactor

• Routinely used for startup on PEGASUS

Research on the A ~ 1 PEGASUS ST is Advancing the Physics and 
Technology Basis of Local Helicity Injection Non-Solenoidal Startup
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Non-Solenoidal 𝐼𝑝 = 0.2 MA Plasma via LHI (𝐼𝑖𝑛𝑗 ≤ 8 kA)
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A Growing Understanding of Physics and Engineering Issues 
in LHI Informs its Application to Next-Step Machines 

M.W. Bongard, IAEA FEC 2018

• Helicity injector source design

– 𝐼𝑖𝑛𝑗, 𝑤: set 𝐼𝑇𝐿 ≥ 𝐼𝑝

– 𝑁𝑖𝑛𝑗𝐴𝑖𝑛𝑗𝑉𝑖𝑛𝑗: attain / sustain 𝐼𝑝

– Armoring, limiters to minimize PMI

• Injector system geometry

– Provide initial relaxation via near-PF null 

– Site conformal to desired plasma shape

– Facility port access compatibility

• Injector impedance and power systems

– 𝑍𝑖𝑛𝑗 = 𝑍𝑖𝑛𝑗(𝑛𝑎𝑟𝑐 , 𝑛𝑒𝑑𝑔𝑒 , … )

• Scaling to high 𝐼𝑝
– Larger size

– High 𝐵𝑇

– Longer pulse 

• Handoff to non-inductive CD

– LHI → OH H-mode demonstrated

• Confinement, impurities, and 
dissipation during LHI

• LHI current drive mechanism

LHI Physics Models Coupled Physics/Engineering Needs Outstanding Issues

𝐼𝑝 𝑉𝐿𝐻𝐼 + 𝑉𝐼𝑅 + 𝑉𝐼𝑁𝐷 = 0 ; 𝐼𝑝 ≤ 𝐼𝑇𝐿

Reconnecting LHI 
Current Stream

• Global 𝐼𝑝 limits:

– Taylor relaxation

– Helicity conservation

• Predictive power balance: 𝐼𝑝(𝑡)

• 3D resistive MHD / NIMROD

– Initial relaxation

– Role of reconnection

𝑉𝐿𝐻𝐼 ≈ 𝐴𝑖𝑛𝑗𝐵𝑇,𝑖𝑛𝑗𝑉𝑖𝑛𝑗/Ψ

𝐼𝑝 ≤ 𝐼𝑇𝐿~ 𝐼𝑇𝐹𝐼𝑖𝑛𝑗/𝑤

Time [ms]

LHI OH H-mode

Low-𝐵𝑇 𝐼𝑝(𝑉𝐿𝐻𝐼) Scaling



• Extrema of feasible LHI geometries deployed in Pegasus

• Low-field-side (LFS) injection

– Injectors on outboard midplane

– High 𝑅𝑖𝑛𝑗 → low 𝑉𝐿𝐻𝐼

– Dynamic shape → strong 𝑉𝐼𝑁𝐷

• 𝐼𝑝 ~ 0.2 MA attained in both geometries

– Power supply and PMI limited

Varying Injector Location Enables Study of LHI 
Physics and Engineering Tradeoffs
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Location of LHI Systems,
Static HFS Plasma Geometry

Quantity LFS HFS

𝑁𝑖𝑛𝑗 ≤ 3 ≤ 2

𝐴𝑖𝑛𝑗 2 cm2 4 cm2

𝑅𝑖𝑛𝑗 0.70 m 0.26 m

𝐵𝑖𝑛𝑗 ≤ 0.08 T ≤ 0.22 T

𝑉𝑖𝑛𝑗 ≤ 1.5 kV ≤ 1.5 kV

𝐼𝑖𝑛𝑗 6 kA 8 kA

𝑃𝑖𝑛𝑗 9 MW 12 MW

𝑉𝐿𝐻𝐼
𝑉𝐿𝐻𝐼,𝐿𝐹𝑆

1 3.7

Injector System Comparisons LFS: Non-solenoidal Induction HFS: Helicity Injection

• High-field-side (HFS) injection

– Injectors in lower divertor 

– Low 𝑅𝑖𝑛𝑗 → strong 𝑉𝐿𝐻𝐼

– Static shape → minimal 𝑉𝐼𝑁𝐷



New Scenarios Developed to Transfer Between LFS → HFS 
Injector Systems and Combine Strengths of Each Geometry

M.W. Bongard, IAEA FEC 2018

𝐼𝑝 = 0.225 MA LFS → HFS LHI Startup

𝑅𝑖𝑛𝑗 = 26 cm, 𝐵𝑇 = 0.15 T
Thomson Scattering Profiles 
𝑅𝑖𝑛𝑗 = 26 cm, t = 28.5 ms• LFS → HFS handoff provides ready access 

to full-𝐵𝑇 operations with HFS injectors

– LFS: Simpler relaxation access, lower PMI

– HFS: Higher 𝑉𝐿𝐻𝐼

– Seamless transfer between separate LHI systems

• Informs HFS high-𝐵𝑇 LHI system design

– Relaxation, sustainment requirements may demand 

separate hardware features in higher-field machines

• Record LHI 𝐼𝑝 = 0.225 MA attained

– Peaked temperature, density pressure profiles

– 𝑇𝑒 > 100 eV, 𝑛𝑒 ~ 1×1019 m-3



Recent Experiments Suggest High Frequency Magnetic 
Activity and Reconnection Play a Role in LHI Current Drive

M.W. Bongard, IAEA FEC 2018

• NIMROD simulations of HFS LHI reproduce 
features observed in experiment

– Relaxation to tokamak-like state

– Bursty 10’s kHz 𝑛 = 1 activity on LFS Mirnovs

– Identifies helical current stream reconnection as 

a current drive mechanism

PEGASUS NIMROD

Internal 𝐵𝑧 Measurements

• Anomalous, reconnection-driven 
ion heating present during LHI 

– Continuously sustains 𝑇𝑖 > 𝑇𝑒

– Consistent with two-fluid 
reconnection theory

– 𝑇𝑖 correlated with high
frequency activity

• Internal magnetic measurements 
find significant high-frequency 
spectral content 

– ~700 kHz feature: arc source

– Broadband continuum



Operating Regime with Significant Reduction of Large-Scale 
MHD and Increased 𝐼𝑝 Found During HFS Injection Experiments

• Abrupt MHD transition can lead to improved performance

– Low-f 𝑛 = 1 activity reduced by over 10× on LFS

– Bifurcation in 𝐼𝑝 evolution following transition

– Up to 2× 𝐼𝑝 at fixed 𝑉𝐿𝐻𝐼

– Linear scaling of 𝐼𝑝(𝑉𝐿𝐻𝐼) in this regime at low 𝐵𝑇 = 0.05 T

• Sustained discharges without 𝑛 = 1 activity possible

– Implies 𝑛 = 1 mode not responsible/required for LHI current drive

• Mechanism for transition unclear, under investigation

– 𝑛 = 1 reduction interpreted as stabilization of injector streams

– Extremely sensitive to 𝐵𝑇, 𝐵𝑍, 𝐼𝑝, fueling

– Access scales with 𝐼𝑝/𝐼𝑇𝐹 ~ 1: min- 𝐵 well?

– If extensible to higher 𝐵𝑇, may afford simpler LHI system 

requirements
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Operating Space for ~8,500 HFS LHI Discharges

New Reduced MHD Regime Improves Plasma Performance



HFS LHI at Near-Unity A Provides Access to 𝛽𝑡 ~ 100%
and Magnetic Configurations with Minimum 𝐵 Wells

• Access to highly-shaped, high 𝛽𝑡 plasmas

– Low 𝐼𝑇𝐹 ~ 0.6 𝐼𝑝

– 𝐴 ~ 1: high 𝜅, low ℓ𝑖, and high 𝛽𝑁,𝑚𝑎𝑥

– Reconnection-driven 𝑇𝑖 > 𝑇𝑒

– Disrupting at ideal no-wall stability limit

• High-𝛽𝑡 equilibria contain large min- 𝐵 region

– Up to 47% of plasma volume 

– Potentially favorable for stabilization of drift modes, 
reduction of stochastic transport

• Minimum 𝐵 regime arises from 3 major influences

– 𝐵𝑝 ~ 𝐵𝑇 at 𝐴 ~ 1

– Hollow 𝐽(𝑅)

– Pressure-driven diamagnetism (although 𝛽𝑝 < 1)
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Min 𝐵 Well in
𝛽𝑡 ~ 100% Plasma
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Troyon Stability Diagram 
for Tokamaks, STs

High 𝐼𝑁 = 5𝐴𝐼𝑝/𝐼𝑇𝐹 > 10 accessible at 𝐴 ~ 1.2 in PEGASUS



URANIA Experiment: Converted PEGASUS Facility for
US Non-Solenoidal Development Station
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• Mission: compare / contrast / combine reactor-relevant 
startup techniques at 𝐼𝑝 ~ 0.3 MA

– LHI, CHI, RF/EBW Heating & CD

– Goal: guidance for ~1 MA startup on NSTX-U, beyond

• Upgrades from PEGASUS to URANIA:

– New centerstack assembly: No solenoid magnet

– Increase 𝐵𝑇 4×: 0.15 → 0.6 T

– Longer pulse: 25 → 100 ms

– Improved shape control with new PF, divertor coils

– Diagnostic neutral beam: kinetic and impurity diagnostics

– EBW RF Heating & CD (w/ ORNL)

– Transient, Sustained CHI (w/ Univ. Washington, PPPL)

• Engineering design underway

– Centerstack upgrade scheduled for late 2019

PEGASUS URANIA

Solenoid-free
24-turn TF Bundle

High-Stress OH Solenoid
12-turn TF Bundle

URANIA Experiment

URANIA Concept Drawing


