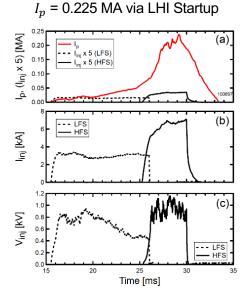
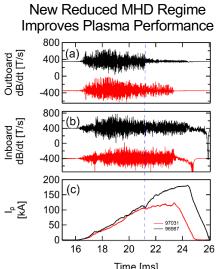
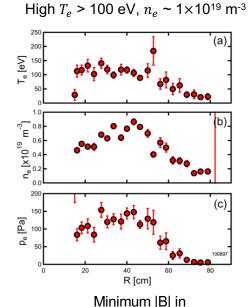


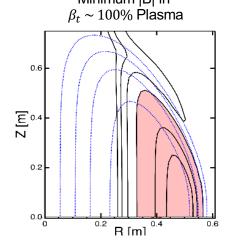
Bongard *et al.*, EX/P6-34: Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup

Scientific Quality: Recent Achievements


- Record non-solenoidal $I_p = 0.225$ MA via Local Helicity Injection (LHI) in Pegasus ST
- LHI plasmas compatible with Ohmic sustainment and H-mode access
- Correlation of anomalous ion heating with continuous reconnection activity during LHI
- High $T_e > 100$ eV at tokamak density $(n_e \sim 1 \times 10^{19} \text{ m}^{-3})$
 - · Record for helicity injection startup
- New reduced MHD regime discovered, leading to improved LHI $I_p(t)$
- Experimental realization of large minimum-|B| well in world-record $\beta_t = 100\%$ plasmas


Relevance to Fusion Energy: Critical Issues Addressed


- Non-solenoidal startup capability eliminates need for central solenoid
 - Startup hardware removable before nuclear phase
- First demonstration of LHI I_p growth via handoff between separate HI systems
 - Proof-of-concept for future high B_T injectors specializing in early, late phases of sustainment
- Predictive 0D model suggests scenarios for NSTX-U, beyond


Supporting Comments: Next Steps

 Major facility upgrades to Pegasus planned to support comparative studies of LHI, coaxial helicity injection, with EBW RF heating/CD

