EXPERIMENTAL EVIDENCE OF LOWER HYBRID WAVE SCATTERING IN ALCATOR C-MOD DUE TO SCRAPE OFF LAYER DENSITY FLUCTUATIONS

Elijah H. Martin

Fusion and Materials for Nuclear Systems Division, ORNL

PRESENTED BY:

Gregory M. Wallace

Plasma Science and Fusion Center, MIT

27th IAEA FEC | Gandhinagar, India | October 26th, 2018

 $\tilde{n}_e = 0 \qquad \tilde{n}_e = 0.9$

COLLABORATORS

Cornwall Lau	(ORNL, FM	insd) \longrightarrow	leader of the sin	nulation effort
OAK RID National Labor	GE atory	Alcator C-Mod	PSFC	Lawrence Livermore National Laboratory
Greg Wallace	(MIT, F	PSFC)	David Green	(ORNL, FMNSD)
Bob Mumgaard	(MIT, F	PSFC)		
Syunichi Shiraiwa	(MIT, F	PSFC)	Maxim Umansky	(IINI EES)
Paul Bonoli	(MIT, P	PSFC)	Andric Dimite	(LLINE, FES)
John Wright			Anuns Dimits	(LLINL, FES)
	(ויווו, ר	SFCJ	Ilon Joseph	(LLNL, FES)

Edge Turbulence Alters Lower Hybrid Wave Propagation

DIRECT EXPERIMENTAL $\Rightarrow E_{LH}$ = Lower hybrid wave electric field vector MEASUREMENT

LH wave absorption negligible in SOL near the launcher

Strong LH wave scattering is occurring in the SOL

SOL density fluctuations predict LH wave scattering

LOWER HYBRID CURRENT DRIVE PROVIDES OFF-AXIS CURRENT AT HIGH EFFICIENCY

External current drive is necessary for the steady state reactor.

LHCD Provides: high efficiency

Lower hybrid current drive has been successfully demonstrated in the low density regime.

LOWER HYBRID CURRENT DRIVE ON C-MOD

Lower Hybrid Antenna

PRESENTED DATA

	C-Mod	Reactor	
Field	5.4 T	5 T	
Density	13 ·10 ¹⁹ m ⁻³	5-10·10 ¹⁹ m ⁻³	
Frequency	4.6 GHz	5.0 GHz	
Shape	Diverted	Diverted	
Launched n ₁₁	1.9	2	

Iocal n_e profile

REQUIRED FOR ACCURATE
SIMULATIONS OF |E_{LH}|

Langmuir probes

3

OUTLINE

The Diagnostic and Implementation on Alcator C-Mod

COMSOL FULL-WAVE 3D SIMULATIONS

COMPARISON OF EXPERIMENTAL AND SIMULATION RESULTS

- \bigcirc Optical emission spectroscopy \rightarrow passive measurement of the D_{β} spectrum.
- E_{LH} is determined from a systematic fit to the shape of the spectral line profiles.

DIAGNOSTIC IMPLEMENTATION ON C-MOD

Determining E_{LH} From the σ and π Spectra

6

۸ 🖍

The time dependent Schrodinger equation is fit to the experimentally measured σ and π spectra.

OUTLINE

THE DIAGNOSTIC AND IMPLEMENTATION ON ALCATOR C-MOD

COMSOL FULL-WAVE 3D SIMULATIONS

COMPARISON OF EXPERIMENTAL AND SIMULATION RESULTS

- 3D simulations of E_{LH} are required because LH resonance cone is strongly localized.
- Assumed axisymmetry in n_e and reduced problem to Fourier sum of toroidal modes.

$$\mathbf{E}_{LH}(r, z, \theta) = \sum_{m=1}^{N_m} A_m \mathbf{E}_m(r, z) e^{im\theta}$$

The n_e profile is set by reflectometry measurements and a synthetic turbulence model.

$$n_{e} = n_{eo} \begin{bmatrix} (1 + \tilde{n}_{e} \ e^{-\frac{(r-r_{c})^{2}}{r_{w}}} \sin(\frac{2\pi p}{\lambda_{ne}}) - \frac{(p-p_{c})^{2}}{p_{w}^{2}} \end{bmatrix}$$

REFLECTOMETRY STATIC SYNTHETIC
MEASURED TURBULENCE MODEL

OUTLINE

THE DIAGNOSTIC AND IMPLEMENTATION ON ALCATOR C-MOD

COMSOL FULL-WAVE 3D SIMULATIONS

COMPARISON OF EXPERIMENTAL AND SIMULATION RESULTS $n_e = n_{eo} \left[(1 + \tilde{n}_e \ e^{-\frac{(r-r_c)^2}{r_w}} \sin \frac{(p-p_c)^2}{p_w^2} \right]$ WITHOUT DENSITY FLUCTUATIONS

IE_{LH} was averaged over the vertical and horizontal measurement locations to study power distribution between -n₁₁ and n₁₁ waves.

Averaged $|E_{LH}|$ results indicated a majority of the power is being distributed to $-n_{||}$ wave.

Spatial Variation of $|E_{LH}|$ is Predicted

The spatially variation of |E_{LH}| is in good agreement with the simulation.

LH wave power is not being strongly absorbed in SOL near the launcher.

LH WAVE SCATTERING DIRECTLY MEASURED BY E_{LH}

11

LH wave scattering was found to increase as the midplane is approached.

Strong disagreement was found between simulation and experiment, not sensitive to the n_e profile.

OUTLINE

THE DIAGNOSTIC AND IMPLEMENTATION ON ALCATOR C-MOD

COMSOL FULL-WAVE 3D SIMULATIONS

COMPARISON OF EXPERIMENTAL AND SIMULATION RESULTS $n_{e} = n_{eo} \left[(1 + \tilde{n}_{e} e^{-\frac{(r-r_{c})^{2}}{r_{w}} \sin\left(\frac{2\pi p}{\lambda_{ne}}\right) - \frac{(p-p_{c})^{2}}{p_{w}^{2}}} \right] \quad \text{WITH DENSITY FLUCTUATIONS}$

- 12
- Synthetic turbulence model is based on experimental observations [1] and a BOUT simulation [2].

SYNTHETIC TURBULENCE PREDICTS LH WAVE SCATTERING

13

Synthetic turbulence having $\lambda_{ne} = 5 \ mm$ and $\tilde{n}_e = .75$ can be used to explain experimental and simulation discrepancy in both vertical and horizontal sets of measurements.

Scattering of K_{\perp} has Significant Impact on Core Wave Propagation/Absorption

14

Scattering of k_{\perp} by density blobs can change evolution of $k_{||}$ along the ray \rightarrow different damping profile

CONCLUSIONS

Future Measurements of E_{LH}

DIII-D High Field Side Launch

HFS SOL is quiescent - density fluctuations seem to be absent!

HFS LHCD simulation of DIII-D discharge 147634 using GENRAY-CQL3D shows excellent wave penetration and single pass damping.

Polarizers will be installed early next year, yielding 12 sightlines.

Your Machine?

Have spectrometer... Will travel...

FWHM = 0.007 nm

QUESTIONS

Spectral Line Profile Sensitivity to E_{LH}

-400

-200

E GENRAY VALIDATION OF COMSOL SIMULATIONS

COMSOL model was validated using GENRAY. Normalized Signal 70 00 80 80 80 -P_{LH} (538 kW) –n_e (1.3·10²⁰ m⁻³) **–**B, (5.4 T) P_{1H}=330 kW → (0.80 MA) 0 0.5 1.5 0 2 Time (s) m=-170 600 Amplitude (arb) 007 007 007 E field spectrum (|Am|) m=509

200

Toroidal mode number

0

400

600

counter-current propagating wave

co-current propagating wave

VERTICAL POSITION SCAN OF | E_{LH} | VS. P_{LH}

