FIP/1-2Ra

Completion of 1st ITER Gyrotron Manufacturing and 1 MW Test Result

Y. Oda¹, R. Ikeda¹, T. Nanaki¹, K. Kajiwara¹, T. Kobayashi¹, K. Takahashi¹,

K. Sakamoto¹, S. Moriyama¹, C. Darbos², M. Henderson²

1 National Institute for Quantum and Radiological Science and Technology(QST), 2 ITER Organization

FIP/1-2Rb

Outcome of R&D program for ITER ICRF Power Source System

R. Trivedi¹, A. Mukherjee¹, R. Singh¹, K. Rajnish¹, D. Soni¹, S. Verma¹, G. Suthar¹,
A. Jha¹, P. Ajesh¹, M. Patel¹, R. Anand¹, R. Agarwal¹, K. Mohan¹, J.V.S. Hari¹,
H. Machchhar¹, P. Vasava¹, H. Patel¹, H. Dalicha¹, U. Baruah¹, A. Patel¹, N.P. Singh¹,
N.S. Goswani¹, K.R. Mehta¹, D.V. Upadhyay¹, H. Dhola¹, B. Raval¹, S. Gajjar¹,
A. White², D. Francois², J. Sainz², K. Kozard²

1 ITER India, Institute of Plasma Research, 2 Continental Electronics

FIP/1-2Rc

Recent progress in the development of the European 1 MW,

170 GHz CW gyrotron for ITER

G. Gantenbein¹, F. Albajar², S. Alberti³, K. Avramidis¹, W. Bin⁴, A. Bruschi⁴,

J. Chelis⁵, F. Fanale⁴, J.-P. Hogge³, S. Illy¹, Z. C. Ioannidis¹, J. Jelonnek¹, J. Jin¹,

W. Kasparek¹, G. Latsas¹, C. Lechte¹, F. Legrand⁷, I. G. Pagonakis¹, T. Rzesnicki¹,

P. Sanchez², C. Schlatter³, M. Schmid¹, M. Thumm¹, I. G. Tigelis⁵, A. Zein¹, A. Zisis⁵

1 Karlsruhe Institute of Technology (KIT), 2 Fusion For Energy (f4E), 3 Swiss Plasma Center (SPC), EPFL 4 Consiglio Nazionale delle Ricerche (CNR), 5 National and Kapodistrian University of Athens 6 IGVP, University of Stuttgart, 7Thales Electron Devices (TED)

FIP/1-2Ra/Rb/Rc Overview of ITER RF Heating System

FIP/1-2Ra/Rb/Rc Configuration of EC RF & IC RF system

ITER EC RF system configuration FIP/1-2Ra, FIP/1-2Rc

FIP/1-2Ra Manufacturing of 1st ITER Gyrotron was Completed OST

and QST started its Acceptance Test.

FIP/1-2Ra Success of Steady State Operation

Demonstration of 170 GHz / 300 s pulse with 1.04 MW output power at 51% electric efficiency succeeded with 95% of reliability.

4/12

FIP/1-2Ra

Achievement of Acceptance Test Criteria

European 1MW, 170 GHz CW gyrotron for ITER Design parameter and test set-up

- European 1 MW, 170 GHz industrial prototype CW gyrotron for the ITER: conventional (hollow-cavity) gyrotron
- Developed by the European GYrotron Consortium (EGYC) in cooperation with Thales Electron Devices (TED) and under the coordination of the European Joint Undertaking for ITER and the Development of Fusion Energy (F4E)
- Physical design of main components (i.e. magnetron injection gun (MIG), cavity, internal mode converter) based on a modular short-pulse (SP) prototype and technical design based on the 1 MW, 140 GHz CW gyrotron for W7-X
- First step: Short-pulse experiments to optimize the gyrotron alignment in the magnetic field, verify the optimum operating parameters (i.e. voltage, current, magnetic field profile) for maximum generated RF power.
- Second step: Long pulse operation up to 180 s (limitation of the HV power supply at KIT).

Typical parameter for CW operation			
Parameter	Value		
Operating mode	TE _{32.9}		
Magnetic field	6.78 T		
Accelerating voltage	79.5 kV		
Depression voltage	35 kV		
Beam current I _b	40 A		
Beam radius R _b	9.44 mm		
Pitch factor α	1.29		
Output power at window	1 MW		
Frequency	170.23 GHz		
Interaction efficiency	35 %		
Total efficiency, w/o depressed	22.0/		
collector	52 70		
Total efficiency, w/ depressed			
collector	>50 %		
Peak Ohmic wall loading in the cavity	2.1 kW/cm ²		
The European 2	L MW 170 (

The European 1 MW 170 GHz CW ITER gyrotron installed at the KIT test facility.

Microwave measurement chamber with transmission system and absorber load.

G. Gantenbein et. al., Recent progress in the development of the European 1 MW, 170 GHz CW gyrotron for ITER

Experimental Results (I)

RF power (left) and efficiency (right) with respect to the magnetic field angle at the cathode emitter and the radius of the electron beam in the cavity

For each (φ_{B} , R_{b}) combination the voltage and beam current has been optimised with the collector depression voltage set to 20 - 25 kV

811 kW @ ($\varphi_{\rm B}$ = -3°, $R_{\rm b}$ = 9.50 mm) with 36 % efficiency (single stage depressed collector operation)

G. Gantenbein et. al., Recent progress in the development of the European 1 MW, 170 GHz CW gyrotron for ITER

Experimental Results (II)

RF power and efficiency versus the depression voltage (ϕ_B = -3°, R_b = 9.50 mm). Pulse length= 60 s

Typical 180 s pulse achieved during the experiments, the temperature measurement in the load (proportional to RF power) is delayed and shows oscillations at the beginning of the pulse due to the KIT cooling system only (all measurements normalised to the indicated values).

Conclusions and Next Steps

Spherical

- Tests of the gyrotron at SPC, EPFL
- Goal: increase pulse length up to 3600 s
- Intermediate results
 - Pulse length up to 215 s
 - 1 MW RF power in short pulse operation (~ ms)
 - 810 kW RF power in long pulse operation
 - Limitations by external transmission components
- Next experimental campaign (until end of 2018) with improved RFCU and RF load

EU 1 MW 170 GHz gyrotron installed at SPC teststand

Status of ITER gyrotrons

	JA gyrotron	RF gyrotro	n	EU gyrotron	IN gyrotron	
Status	1st tube completed	1st & 2nd	completed	Prototype	Design	
Frequency	169.85 GHz	169.9	9 GHz	170 GHz	170 GHz	
Power	1.04 MW	0.96 MW (MOU output)		0.81 MW	-	
Efficiency	51 %	55% 53%		36 %	-	
Pulse	300 s	1000 s		215 s	-	
Reliability	95%	95% 100%		-	-	
	20 shots of 300 s	40 shots of 1000 s				
Modulation	5 kHz (200s, 0.8MW)	1kHz (200s, 0.8MW)		-	-	
Beam profile	96.5 % HE ₁₁ mode	97% HE ₁₁ mode		-	-	

First plasma components are ready for operation

ITER-India Specification for R&D chain & design criteria

Major Specification

- > Tunable frequency range: 35 to 65 MHz with 180s with static parameter & HoM tests
- O/P RF power: 1.5 MW, 2000s @ Lower & higher edge frequency up to VSWR 2:1 & 1dB BW for ±1MHz @ match load
- O/P RF power: 1.7 MW, 3600s @ lower edge frequency up to VSWR 1.5:1 & 1dB BW for ±1MHz @ match load

Driver Amp. 100kW HPA-2

End stage Amp. 1.5 MW HPA-3

ITER-India Test results with matched load

Phase		Freq.	HPA3 Pf	HPA3 Pr	HPA2 Pf	HPA2 Pr	SSPA Pf	Va-3	la-3	Eff-3	Diss-3	Gain-3
Shifter	TST	MHz	kW	kW	kW	kW	kW	kV	А	%	kW	dB
	HPL (35	1248	4.2	79.4	16.54	4.17	22.50	106	52.3	1137	11.96
HPA2	DL	36	1497	3.22	67.77	0.29	4.17	22.50	102.8	64.7		13.44
	1	37	1234	1.54	72.18	3.16	4.17	22.50	106.2	51.6	1155.5	12.33
НРАЗ	11/12	54	1173.4	6.74	51.7	8.10	3.58	23.00	85.8	57.97	829.4	13.45
	MA CON	55	1513.0	7.78	61.6	0.06	3.58	23.00	99.0	66.45	764.0	13.90
	1 1135	56	1131.0	4.38	70.6	10.56	3.58	23.00	99.3	51.14	1115.9	12.19
	CALL CONT		1dB	BW me	asureme	ent @ 36	& 55 M	Hz @ 1.5	MW			
CH 1 66.78 kW A HPA2	Freq.		HP	43			HPA2				SSPA	
CAL OUT Toomit max M Source	(MHz)	Fwd	. (kW)	Rev	.(kW)	Fwd.	(kW)	Rev.(V	∨)	Fwd. (k	W)	Rev.(W)
	36.00	17	700) 1	.77	74.	47	348		4.68		54
Power meter	CH 1 74- >CH 2 348 Powe	47 kW 4 3 W 4 m (20) (1 er meter	HPA2	2 2 2 1 1 1	Ove	20 30 4 Time (Mi	A3+HPA2)	Agilent T Log 1 100 - 11 1234 - 4 1234	echnologies: N3913 1500 dBm Aten 1	3A, SN: MY53103481	Wed, 15 Mar 2	217 3.34.50 PM
Harmonics	DL P = T1 = 61 dT = 16 Setup:	1735.2 .7 T2 .6 Th Press	2= 78.3 4= 70.0 5 ENTER	AL OU Ref 17 T T T T T T T T T T T T T	* HBW dB vBW 90 dBm 5WT	100 MH2 1 MH2 2.5mb M3[3 M2[3 M2[3 M2[3 M2]3 M2]3 M2[3 M2]3 M2]3 M2[3 M2]3 M2]3 M2[3 M2]3 M2]3 M2[3 M2]3 M2]3 M2[3 M2]3 M2]3 M2[3 M2]3 M2]3 M2[3 M2]3	13 37.00000 13 35.00000 13 36.000000 36.000000	2.28 dBm 8000 BHm 8444 dBm 8600 HHz 8.00 dBm 8000 HHz F	Gain, Ha for 36 M Note: 1 1MW, of 1dB	armonics a AHz @ 1.7 The system 2000s incl BW at 40,4	was also uding mo 15, 50 and	d Width tested for easurement d 55 and 60
55 IVIHZ @ 1.5 IVIW, 2000s	36 MHz @ 1	L.7 MW,	3600s	9 dBm-					MHz.			

ITER-India RF Test on Mismatched Load

Fre		HPA	.3	HP	A2	SSPA		
q. (M Hz)	Fwd. (kW)	Rev. (kW)	VSWR	Phase	Fwd. (kW)	Rev. (W)	Fwd. (kW)	Rev. (W)
36	1713	66.8	1.49	100°	87.8	840	5.41	45

Ref. angle	P	_{output} (k)	₩)	V _{Anode} (kV)		, I	Anode(A)	Anode _{dis} (kW)	SG _{dis} (kW)
(Deg.)	SSPA	HPA 2	НРАЗ	HPA2	HPA3	HPA2	HPA3	НРАЗ	HPA3
0	2.73	41.3	1506	11.1	23	8.95	68.5	273.3	3.6
45	2.89	45.4	1506	11.1	21.0	9.5	78.0	341	3.9
90	4.28	74.9	1515	11.1	19.5	12.5	108.5	828.2	4.23
135	4.89	90.7	1514	11.1	18.1	14.0	129.0	1075.5	8.16
180	4.85	93.6	1515	11.6	20.5	14.2	133.3	1465.7	7.8

Constant O/P power 1.5 MW @ 55 MHz @ VSWR 2 with different angles

Measurement of power and Harmonics @ 1.5 MW, 2000s, 55 MHz

Run test was conducted for 55 MHz, 1.5 MW, 2000s for five consecutive RF pulses with 25 % duty cycle

Constant O/P power 1.7MW @ 36 MHz @ VSWR 1.5

Summary

ITER EC System

FIP/1-2Ra Completion of 1st ITER Gyrotron Manufacturing and 1 MW Test Result

- Manufacturing of 1st ITER gyrotron completed and its acceptance test started.
- 300 s pulse with 1.04MW output / 51% efficiency achieved representing thermally steady state and 95% reliability.
- 1,3,5kHz full power modulation and >95% LP₀₁ mode purity were also achieved.
- 1st ITER gyrotron achieved all the test criteria in success.

FIP/1-2Rc Recent progress in the development of the European 1 MW, 170 GHz CW gyrotron for ITER

- Intermediate results from Tests of the gyrotron at SPC, EPFL
- Pulse length up to 215 s
- **1 MW RF power** in short pulse operation (~ ms)
- 810 kW RF power in long pulse operation

ITER IC System

FIP/1-2Rb Outcome of R&D program for ITER ICRF Power Source System

- R&D RF source using tetrode tubes are tested at INDA test facility.
- 5 consecutive 2000s shots with 25% duty cycle at 1.5MW/55MHz tested successfully.
- Electrical efficiency of complete RF chain is around 55% 60%.