OV/4-5 Progress in Disruption Prevention for ITER

E.J. Strait, with

J.L. Barr¹, M. Baruzzo², J.W. Berkery³, R.J. Buttery¹, P.C. de Vries⁴, N.W. Eidietis¹, R.S. Granetz⁵, J.M. Hanson³, C.T. Holcomb⁶, D.A. Humphreys¹, J.H. Kim⁷, E. Kolemen⁸, M. Kong⁹, N.C. Logan⁸, M. Maraschek¹⁰, M. Okabayashi⁸, J.K. Park⁸, A. Pau¹¹, G. Pautasso¹⁰, F.M. Poli⁸, C. Rea⁵, S.A. Sabbagh³, E. Schuster¹², U.A. Sheikh⁹, C. Sozzi¹³, F. Turco³, A.D. Turnbull¹, Z.R. Wang⁸, W.P. Wehner¹², L. Zeng¹⁴

Presented at the 27th IAEA Fusion Energy Conference Ahmedabad, India

October 22-27, 2018

¹ General Atomics
 ² Consorzio RFX
 ³ Columbia University
 ⁴ ITER Organization
 ⁵ MIT Plasma Science and Fusion Center
 ⁸ Princeton Plasma Physics Laboratory
 ⁹ École Polytechnique Fédérale (Lausanne)
 ¹⁰ Max-Planck-Institut für Plasmaphysik (Garching)
 ¹¹ University of Cagliari
 ¹² Lehigh University
 ¹³ Istituto di Fisica del Plasma (Milano)
 ¹⁴ Institute of Plasma Physics (Hefei)

Burning Plasmas Must Operate with Very Few Disruptions

At full Q=10 performance, ITER's disruption budget requires:

Nearly disruption-free operation

- ≤1 disruption per 100 pulses

Accurate prediction of disruptions

- Mitigation rate ~95-100%

Mitigation of disruptions is necessary, but not sufficient.

ITER also requires highly reliable methods for preventing disruptions.

M. Lehnen, IAEA 2016

A potential scenario for ITER's disruption and mitigation rates

Burning Plasmas Must Operate with Very Few Disruptions

At full Q=10 performance, ITER's disruption budget requires:

Nearly disruption-free operation

 $- \leq 1$ disruption per 100 pulses

Accurate prediction of disruptions

Mitigation rate ~95-100%

Mitigation of disruptions is necessary, but not sufficient.

ITER also requires highly reliable methods for preventing disruptions.

Scope of this talk:

Recent progress (2016-2018) in

strategies to prevent disruptions

Please see the preprint for more extensive references to the important and innovative research in this area.

Disruption-Free Tokamak Operation is a Problem of Control

Disruption-Free Tokamak Operation is a Problem of Control

Stable, Controllable Operation Must Be the Normal State

- Stable plasmas in ITER-relevant scenarios
- Robust control to maintain the operational state
- Active control to expand stability limits

Reproducibly Stable Plasmas Have Been Achieved in Zero-Torque ITER Baseline Scenario Discharges

- Challenge: Maintain stability against tearing modes
 in ITER Baseline Scenario discharges
 - $\beta_N \sim 1.8$, $q_{95} \sim 3$ Low NBI torque, low rotation
- Instability correlates with deep J(r) minimum near q=2

Reproducibly Stable Plasmas Have Been Achieved in Zero-Torque ITER Baseline Scenario Discharges

- Challenge: Maintain stability against tearing modes
 in ITER Baseline Scenario discharges
 - $\beta_N \sim 1.8$, $q_{95} \sim 3$ Low NBI torque, low rotation
- Instability correlates with deep J(r) minimum near q=2

 Modification of early J(r) evolution improves stability

Profile Control is Essential to Achieve and Sustain **Robustly Stable Operation**

- Example: high q_{min} steady-state scenario
- Combined feedforward and feedback scheme controls J(r) and plasma energy
- Model-based control accounts for bootstrap, EC, and NBI driven current

Future work: Profile control in ITER baseline scenario to maintain stable p(r), J(r)

DIII-D: E. Schuster, EX/P6-39

Continuous Control of Instabilities Extends the Range of Stable Operation (e.g. Avoidance of Neoclassical Tearing)

- Pacing by modulated central ICRH limits the sawtooth amplitude
- Smaller sawteeth do not seed NTMs

Continuous Control of Instabilities Extends the Range of Stable **Operation (e.g. Avoidance of Neoclassical Tearing)**

- Pacing by modulated central ICRH limits the sawtooth amplitude
- Smaller sawteeth do not seed NTMs

- ITER modeling predicts that modest ECCD power can pre-emptively stabilize 2/1 NTM
 - Less power than "reactive" control
 - Requires good alignment at q=2 surface

Prevention of Driven Tearing Modes Requires Control of 3D Configuration – i.e., Error Field Control

- n=2 error field in low torque plasmas can penetrate directly \rightarrow n=2 locked island
 - ... or cause braking of plasma rotation \rightarrow n=1 locked island
- Thresholds for n=2 penetration in Ohmic plasmas are comparable to those for n=1
 - vs. density (DIII-D) and vs. q95 (EAST)

Disruption Prevention Requires Prediction and Detection of Instabilities

Requirements differ from those for disruption mitigation

- Sufficient information to decide on the response
- Sufficient time to change the discharge evolution

A broad range of approaches are being pursued

- Physics-based predictors
- Data-driven predictors ("machine learning")
- Direct assessment of plasma stability

Physics-Based, Path-Oriented Algorithms Detect Early Precursors of Disruptions

 Detection of H-mode density limit by dimensionless edge density & confinement

 \rightarrow recovery by ECCD, reduced fueling

AUG: M. Maraschek, PPCF 2018 Also see: C. Sozzi, EX/P1-22

14

E. Strait / IAEA / October 2018

Physics-Based, Path-Oriented Algorithms Detect Early Precursors of Disruptions

 Detection of H-mode density limit by dimensionless edge density & confinement

 \rightarrow recovery by ECCD, reduced fueling

15

DECAF code identifies the chain of events

Multiple event warnings: MHD stability,

leading to disruption

Data-Driven ("Machine Learning") Disruption Warnings Are Developing Toward More Quantitative Outputs

• "Random Forest" algorithm allows identification of the cause of disruption

Data-Driven ("Machine Learning") Disruption Warnings Are Developing Toward More Quantitative Outputs

- "Random Forest" algorithm allows identification of the cause of disruption
- 81317 450 0.5 lp (kA) 0.4 300 disruptivity 0.3 150 0.2 0 0.1 0.0 feature Elongation 0.12 contributions 0.08 0.04 0.00 2 time (s)³ 0 **EAST**: R. Granetz, C. Rea, EX/P6-20
- Generative Topographic Mapping reduces multi-dimensional data to a 2D map

Proximity to Instability Thresholds is Directly Accessible Through Real-Time Stability Calculation or Active Probing

- Calculation of ideal MHD stability with parallelized DCON
 - 200 ms computation time
- Rising uncertainty of ideal-MHD δW may indicate tearing mode onset

DIII-D: M. Roelofs, D. Eldon, APS 2017 A.S. Glasser, E. Kolemen, A.H. Glasser, PoP 2018

Proximity to Instability Thresholds is Directly Accessible Through Real-Time Stability Calculation or Active Probing

- Calculation of ideal MHD stability with parallelized DCON
 - 200 ms computation time
- Rising uncertainty of ideal-MHD δW may indicate tearing mode onset

DIII-D: M. Roelofs, D. Eldon, APS 2017 A.S. Glasser, E. Kolemen, A.H. Glasser, PoP 2018

- Measured damping rate of stable modes
 - Response to 20 Hz applied n=1 perturbation
- Inferred damping rate is in qualitative agreement with ideal-MHD DCON

<u>Future work:</u> Routine use of real-time stability calculations. Relationship of calculated/measured ideal-MHD stability to onset of tearing modes?

E. Strait / IAEA / October 2018

Active Management of "Exceptions" Maintains or Recovers Stable Operation

Exceptions may include:

- Off-normal plasma condition (including instability)
- Hardware faults

Possible actions include:

- Return to normal operation
- Continue the discharge in an alternate scenario
- Controlled discharge termination
- Rapid shutdown as a last resort

Forced Rotation of Magnetic Islands by Applied Magnetic Perturbation Can Prevent Disruption

- Feedback-driven RMP entrains locked mode at ωτ_{wall} ~ 1
 - No disruption until RMP is turned off

Forced Rotation of Magnetic Islands by Applied Magnetic Perturbation Can Prevent Disruption

- Feedback-driven RMP entrains locked mode at $\omega \tau_{wall} \sim 1$
- No disruption until RMP is turned off locking FB on FB off disruption dw/dt [cm/s] δ**Β_, (G)** 2.5 2.0 1.5 Φ (rad) Unstable 1.0 0.5 LΜ 150 0.0 lp (kA) Stable 100 🖡 -0.5 (IV)(III)**50** 🗏 200 300 400 400 time(ms)` 0 100 200 800 600 $\omega_{\rm cf}$ [Hz] <u>Future work:</u> Validate models of stabilization by forced rotation. JT-60SA: S. Inoue, TH/P5-24 How to recover normal operation?
- AEOLUS reduced MHD simulation shows rotating RMP stabilizes a locked mode

GENERAL ATOMICS

²² **RFX-Mod**: M. Okabayashi, NF 2017; EX/P6-25

E. Strait / IAEA / October 2018 Also

ECCD at the Rational Surface Prevents Mode Locking After Impurity Influx

GENERAL ATOMICS

ECCD at the Rational Surface Prevents Mode Locking After Impurity Influx

ECCD at the Rational Surface Prevents Mode Locking After Impurity Influx

Stable Discharge Termination is a Critical Element of Disruption-Free Discharges

- ITER's rampdown requires reduction of elongation for vertical stability → lower q
 - Implications for n=1 stability?
- Stable ITER-like rampdowns in DIII-D & EAST
 ... with |dl_p/dt| up to the maximum expected for an unplanned "soft landing" in ITER
 - Core heating, ELM control, and H-L transition timing are important for stability

<u>Future work</u>: Develop rampdown with a pre-existing locked mode.

P. de Vries, NF 2018 F. Poli, EX/P7-27

E. Strait / IAEA / October 2018 DIII-D: J. E

Integrated Control Systems Supervise the Recognition of Exceptions and Necessary Responses

- Continuous control of the operational state
- Asynchronous responses to exceptions
- Change of operational state as needed

Normal state:

- EC controls β
- EC controls q-profile

GENERAL

Normal state:

- EC controls β
- EC controls q-profile

After Tearing Mode onset:

- Heating power is reduced
- One gyrotron re-aims to q=2

GENERAL

Normal state:

- EC controls β
- EC controls q-profile

After Tearing Mode onset:

- Heating power is reduced $(\mathbf{3})$
- One gyrotron re-aims to q=2 (**4**)

Tearing Mode is stabilized:

- Heating power is restored (5)
- Gyrotron returns to core ECCD $(\mathbf{6})$

GENERA

Normal state:

- 1) EC controls β
- 2 EC controls q-profile

After Tearing Mode onset:

- 3 Heating power is reduced
- 4 One gyrotron re-aims to q=2

Tearing Mode is stabilized:

- 5 Heating power is restored
- 6 Gyrotron returns to core ECCD

Tearing Mode re-appears:

- \bigcirc One gyrotron re-aims to q=2
- 8 Second gyrotron re-aims to q=2

GENERAL

IAEA / October 2018 Also: N. Eidietis, EX/P6-22

Integrated Control Will Enable Robustly Stable Discharges with High Fusion Power in ITER

- Key plasma physics and real-time control elements have been demonstrated
 - Stable scenarios, real-time warning of instabilities, active management of off-normal states
- Many challenges remain ...
 - Physics basis of stable, high performance scenarios
 - Accurate prediction, detection, and identification of exceptions
 - Logic for asynchronous responses
 - Physics basis and control testing of intervention and recovery scenarios

Recommendation: Make disruption prevention routine in present tokamaks

- Beyond "proof of principle" \rightarrow Demonstrate low rates of disruption over many shots

