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ELM mitigation and suppression in ASDEX Upgrade

Magnetic perturbation: OFF ON (toroidal mode# n = 2)
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Moderately elevated triangularity

required for ELM suppression

R Nazikian et al, IAEA FEC 2016
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ELM suppression as observed in ASDEX Upgrade

Magnetic perturbation: OFF ON (toroidal mode# n = 2)
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Effect on ELMs depends on

plasma density.

ELM mitigation:

∆WELM/W = 12% → ∼ 2%

Density “pump-out”

Below a critical density:

ELM suppression:

More “pump-out”

Ti recovery at pedestal
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Outline

Conditions for ELM suppression in ASDEX Upgrade

• Is the density threshold a collisionality limit?

• Plasma response to the magnetic perturbation

• Safety factor constraints

• No rotation threshold observed

• Conclusions from transitions into and out of ELM suppression

see also: W Suttrop et al, Nucl. Fusion 58 (2018) 096031
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Edge operational space of ELM suppression

Pedestal Te - ne diagram:
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√
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However, no transitions ⊥ (ν∗ = const)

Small ELM pedestal pressure limit

(reduced with MP compared to axisymmetric

case)

Conjecture:

Edge stability (shaping, B2

t /q2, jbs)

governs ELM suppression operational

space.
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Poloidal spectrum variation to identify plasma response

Alignment of external MP with B

can be varied by adjusting ∆Φ

(phase difference of upper vs. lower coil

current patterns)

∆Φ

Predicted resonant perturbation field (m = 8, n = 2 at q = 4)
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Poloidal spectrum variation to identify plasma response

MP coil current threshold

for backtransition from ELM suppression

Measured ratio: 1.17

Expected for field-aligned MP: 1.7

kink-peeling: 1.0

→ Kink-peeling response important

for maintaining ELM suppression

Ideal MHD response also describes:

— surface corrugation

M Willensdorfer et al, EX/P8-20

Nucl. Fusion 57 (2017) 116047

— ELM mitigation, pump-out

D A Ryan et al, PPCF 60 (2018) 065005

Predicted resonant perturbation field (m = 8, n = 2 at q = 4)
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Edge safety factor (q95) constraints

ELM suppression occurs only in range q95 = 3.57−3.95
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A model for ELM suppression

A Model for ELM suppression by RMP

Resonant response q = m/n to magnetic

perturbation stops expansion of H-mode edge

transport barrier before ELMs are destabilised.

R Moyer et al, Phys. Plasmas 24 (2017) 102501

M Wade et al, Nucl. Fusion 55 (2015) 23002

P Snyder et al, Phys. Plasmas 19 (2012) 56115

ASDEX Upgrade ELM suppression experiment:

1. Alignment of resonant surfaces with barrier knee?
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Is there a resonant surface at the barrier knee?

Profiles before/after back-transition

peripheral line-averaged density

Outer divertor thermocurrent

empirical upper bound for ELM suppression
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Is the resonant response shielded?

Resistive response can be reduced (shielded) by helical currents induced by cross-field flows

2-fluid MHD: ωe,⊥ governs field shielding M Bécoulet et al Nucl. Fusion 52 (2012) 054003

So far no restrictions of plasma flow

for ELM suppression in ASDEX Upgrade:
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Is the resonant response shielded?

However, the E ×B flow crosses zero in the pedestal region.

– With co-Ip NBI injection,

Er > 0 in the plasma core

– H-mode edge barrier: Er < 0

→ particle orbits can resonate with the static MP

field.

ωE×B = 0 in the vicinity of some rational surface:
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Is the resonant response shielded?

Kinetic model shows that a resonant response field Br and enhanced radial transport can occur.

M Heyn et al, NF 54 (2014) 64005

Additional “kinetic” resonance at ωE×B = ωMP

ω       =0
ExB

ω       =0
e,

ωE×B = 0 in the vicinity of some rational surface:
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Transitions into and out of ELM suppression

Occasionally, repetitive transitions are observed:
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“Limit cycle” oscillations

(possibly controlled by q95)

During suppression:

Strong rotation braking towards

zero flow

→ Resonant torque

ELMing phases:

Initial negative (ctr-NBI) rotation

→ Dominant NTV torque (?)
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Backtransition from ELM suppression

Backtransition from ELM suppression:
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Sharp change of toroidal rotation is observed:

first on pedestal top (ψn = 0.93, q = 7/2)

ms later at the pedestal knee (ψn = 0.97, q = 4)

suggests torque is exerted well inside pedestal top and

momentum is transported outward.
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Model vs. experiment

A Model for ELM suppression by RMP

Resonant response q = m/n to magnetic

perturbation stops expansion of H-mode edge

transport barrier before ELMs are destabilised.

ASDEX Upgrade ELM suppression experiment:

1. Alignment of resonant surfaces with barrier knee?

Yes. (✓)

2. Resistive response at resonant surfaces?

— Not expected in all cases from 2-fluid MHD (✗)

— Requires particle resonance:

ωE×B = ωMP = 0 surface exists (✓)

— Strong rotation braking during suppression (✓)

3. Alignment of resistive response with barrier knee?

In some cases torque is exerted further inside (✗)

But — what else can cause the additional transport

that keeps the plasma edge stable against ELMs?
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Broadband turbulence causes transport across edge barrier

Broadband mode, intensity non-axisymmetric

Fixed frequency reflectometry, rotating MP

toroidal angle Φ

plasma surface 
corrugation

N Leuthold, L Gil, J Vicente et al, EPS Conf. 2018, P1.1109

Fluctuating transport into divertor replaces ELMs

AXUV bolometer view onto inner divertor
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Summary

• Robust ELM suppression by Magnetic Perturbations in ASDEX Upgrade

• Main features:

⊲ Amplification of MP by ideal plasma response

⊲ Resistive reponse at various surfaces (locations), role unclear

⊲ Pedestal pressure below ELM stability limit

⊲ Broadband turbulence causes additional transport across barrier
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