

Recent advances in ICRF heating of mixture plasmas: survey of JET and AUG experiments and application for JET-DT and ITER

Yevgen Kazakov*

on behalf of JET Contributors, the ASDEX Upgrade Team and the EUROfusion MST1 Team * Laboratory for Plasma Physics, LPP-ERM/KMS, TEC Partner, Brussels, Belgium

JET overview: E. Joffrin, OV/1-3 AUG overview: H. Meyer, OV/2-1

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed hereir do not necessarily reflect those of the European Commission.

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

ICRH and wave-particle interaction:

 $\omega = n \omega_{ci} + k_\parallel v_\parallel ~~(n=1,2,3,...)$

Reference ICRH scheme for ITER D-T plasmas: \bullet second harmonic (n = 2) heating of fuel T ions, assisted with minority heating (n = 1) of ³He ions (~ 2-3%)

ITER Physics Expert Group on EP, H&CD, Nucl. Fusion (1999); R. Dumont and D. Zarzoso, Nucl. Fusion (2013)

Demonstrated in the past D-T experiments on TFTR and JET

D. Start, Plasma Phys. Control. Fusion (1998); J.R. Wilson, Phys. Rev. Lett. (1995)

- Mixed plasmas: ion-ion hybrid layer between R_{c1} and R_{c2} ; traditionally applied for electron heating via mode conversion
- Strongly enhanced E_{+} RF electric field \rightarrow facilitates wave absorption by ions
- Three-ion scenarios: add 'third' ion component to absorb ICRH power (*n* = 1) !

Main ions no. 1 **Resonant** ions (no. 3) Main ions no. 2

<u>Option 1</u>: ions with $(Z/A)_i$ as one of the two main ions, but with large v_{μ}

Y. Kazakov, Nucl. Fusion (2015) and Phys. Plasmas (2015); J. Ongena, EPJ Web. Conf. (2017); D. Van Eester, Plasma Phys. Control. Fusion (2017)

<u>Option 2</u>: add third ions with $(Z/A)_i$ different than for the two main ions $(Z/A)_2 < (Z/A)_3 < (Z/A)_1$

- **1.** Optimize steady-state *Q* and fusion power in JET DTE2
 - accelerate NBI ions with *n* = 1 ICRH to the energies at which D-T reactivity is maximized

- 2. Use intrinsic ⁹Be impurities as ICRH minority: $(Z/A)_{\rm T} < (Z/A)_{\rm 9Be} < (Z/A)_{\rm D}$
 - \rightarrow strong bulk ion heating [Y. Kazakov, Phys. Plasmas (2015)]

also seen in TFTR D-T plasmas with ⁷Li [J.R. Wilson, Phys. Plasmas (1997)]

Y. Kazakov et al. | IAEA-FEC 2018 | EX/8-1 | 22-27 October 2018

Core RF power absorption by ⁹Be impurities (*X*[⁹Be] ~ 0.5-1%)

Demonstration of option 1: accelerating D-NBI ions to higher energies in H-D plasmas on JET

Acceleration of D-NBI ions (E_{NBI} = 100keV) to MeV-range energies with n = 1 ICRH in H-D mix

[J. Ongena, EPJ Web. Conf. (2017)]

X[H] ≈ 85%, *X*[D] ≈ 15%

Presence of $E_{\rm D}$ > 1MeV ions confirmed: **TOFOR** neutron measurements and **TRANSP** modeling

 $D + D \rightarrow {}^{3}\text{He} (0.82\text{MeV}) + n (2.45\text{MeV})$

TOFOR diagnostic: C. Hellesen, Nucl. Fus. (2010) TRANSP analysis: K. Kirov and Y. Baranov (CCFE)

- TRANSP: most of energetic ions are passing ions ($v_{\parallel}/v \approx 0.3-0.5$) ${\color{black}\bullet}$
- Actuators to adapt scenario for DT: increasing *P*_{NBI}, off-axis ICRH deposition and choice of NBI sources

Demonstration of option 2: using third ion species with $(Z/A)_2 < (Z/A)_3 < (Z/A)_1$ for ICRH heating of mixture plasmas

nature OCTOBER 2017 VOL 13 NO 10 physics

A recipe for more plasma

ATOM INTERFEROMETRY **Festing** gravity

SOFT-MATTER PHYSICS Hairy on the inside

QUANTUM MAGNETISM laguette phase revealer

Proof-of-principle experiments on JET and Alcator C-Mod: Ye.O. Kazakov, J. Ongena, J.C. Wright, S.J. Wikitch et al., Nature Physics 13, 973-978 (2017) https://www.nature.com/articles/nphys4167

Demonstration of option 2: using third ion species with $(Z/A)_2 < (Z/A)_3 < (Z/A)_1$ for ICRH heating of mixture plasmas

nature ORER 2017 VOL 13 NO 1 IVSICS

A recipe for more plasma

ATOM INTERFEROMETR festing gravity

SOFT-MATTER PHYSICS airy on the inside

Has been also demonstrated on a third machine, AUG tokamak !

Proof-of-principle experiments on JET and Alcator C-Mod: Ye.O. Kazakov, J. Ongena, J.C. Wright, S.J. Wikitch et al., Nature Physics 13, 973-978 (2017) https://www.nature.com/articles/nphys4167

Progress of ICRH on AUG: J.-M. Noterdaeme et al., EX/P8-23

D-(³He)-H ICRH scheme: demonstrated on three tokamaks worldwide

- Efficient heating of H-D plasmas with ³He demonstrated on Alcator C-Mod, AUG and JET
- JET: ³He concentrations as low as ~0.1-0.2% were successfully applied

- Efficient plasma heating for $65\% \le X[H] \le 82\%$ and $0.1\% \le X[^{3}He] \le 1.5\%$
- Centrally peaked temperature profiles
- Heating performance $\Delta W_{\rm p} / \Delta P_{\rm ICRH} \approx 0.16-0.18 MJ/MW$
- For similar operational conditions (I_{p}, B_{0}, n_{e0}) :

~10-20% lower than for (H)-D scenario ~60-80% higher than for (³He)-H scenario

Transport effects associated with fast ³He population ? ITG stabilization with (³He)-D ICRH on JET and AUG: N. Bonanomi, NF (2018); F.N. de Oliveira, EPS-2017 (2017)

Heating performance:

~0.20MJ/MW for (H)-D scenario: E. Lerche, AIP Conf. Proc. (2014) ~0.10MJ/MW for (³He)-H scenario: D. Van Eester, EPJ Web. Conf. (2017)

Confirmed with y-ray and FILD measurements, excitation of TAE and EAE modes, ...

FILD measurements on JET and AUG

y-ray spectroscopy: M. Nocente, EPS-2018 (2018) FILD on JET: V. Kiptily, IAEA-EP Tech. Meeting (2017) FILD on AUG: J. Galdon-Quiroga, M. Garcia-Munoz et al. (Sevilla Univ.)

Counts (x10⁵)

FILD measurements on AUG confirm that ³He is resonant species

Reducing ³He energies to improve fast-ion confinement in AUG

- #34704: HFS off-axis ³He resonance ($\rho_{pol} \approx 0.3$), efficient plasma heating
- CXRS measurements: clear energetic ³He signal identified, correlated with P_{ICRH}

Measured and modeled CX spectra (using TORIC-SSFPQL) quantitatively agree

Further details: A. Kappatou et al., EPS-2018, O2.105 (2018)

JE

Option 1: using fast NBI ions

- \rightarrow T-(D_{NBI})-D scheme for D-T plasmas (with D⁰ NBI)
- ⁴He-(H_{NBI})-H scheme for non-active ⁴He-H plasmas (with H⁰ NBI)

Option 2: using thermal ions with an intermediate $(Z/A)_i$

lon species	т	Impurities: ⁹ Be, ⁴⁰ Ar, ⁷ Li, ²² Ne,	D, ⁴ He, ¹² C, ¹⁶ O,	³ He	н
(Z/A) _i	1/3	~0.43-0.45	1/2	2/3	1

M. Schneider, EPJ Web. Conf. (2017); Y. Kazakov, Phys. Plasmas (2015); Y. Kazakov, P5.1047, EPS-2018; R. Bilato, P1.1070, EPS-2018

Y. Kazakov et al. | IAEA-FEC 2018 | EX/8-1 | 22-27 October 2018

• T-(⁹Be)-D scheme: using ⁹Be impurities as an ICRH minority for heating D-T plasmas

M. Schneider, EPJ Web. Conf. (2017); Y. Kazakov, Phys. Plasmas (2015); *R. Bilato, P1.1070, EPS-2018* Y. Kazakov, P5.1047, EPS-2018;

lon species	т	Impurities: ⁹ Be, ⁴⁰ Ar, ⁷ Li, ²² Ne,	D, ⁴ He, ¹² C, ¹⁶ O,	³ He	H
(Z/A) _i	1/3	~0.43-0.45	1/2	2/3	1

Scenarios for non-active plasmas in ITER

⁴He-(³He)-H scheme: especially off-axis ³He heating in H-⁴He plasmas for H-mode studies at $B_0 \approx 3-3.3T$

- \rightarrow reduced L-H threshold (by ~30%) in hydrogen plasmas with 10-15% of ⁴He observed on JET (J. Hillesheim, EX/4-1)
- \rightarrow possibility already accounted for in *ITER Research Plan within the Staged Approach* (2018)
- \rightarrow encouraging first results with off-axis ³He ICRH in H-D plasmas on AUG; more studies foreseen

M. Schneider, EPJ Web. Conf. (2017); Y. Kazakov, Phys. Plasmas (2015); Y. Kazakov, P5.1047, EPS-2018; R. Bilato, P1.1070, EPS-2018

Scenarios for non-active plasmas in ITER

⁹Be/Ar-(⁴He)-H scheme: <u>using impurities (⁹Be and Ar) to heat ⁴He ions!</u>

M. Schneider, EPJ Web. Conf. (2017); Y. Kazakov, Phys. Plasmas (2015); *R. Bilato, P1.1070, EPS-2018* Y. Kazakov, P5.1047, EPS-2018;

TORIC: fraction of RF power absorbed by⁴He ions

Option 1: using fast NBI ions

- \rightarrow T-(D_{NBI})-D scheme for D-T plasmas (with D⁰ NBI)
- \rightarrow ⁴He-(H_{NBI})-H scheme for non-active ⁴He-H plasmas (with H⁰ NBI)

Option 2: using thermal ions with an intermediate $(Z/A)_i$

- \rightarrow T-(⁹Be)-D scheme for D-T plasmas
- ⁴He-(³He)-H scheme for non-active H-⁴He plasmas
- ⁹Be/Ar-(⁴He)-H scheme for non-active H plasmas with a small amount of ⁹Be and/or Ar impurities

M. Schneider, EPJ Web. Conf. (2017); Y. Kazakov, Phys. Plasmas (2015); Y. Kazakov, P5.1047, EPS-2018; *R. Bilato, P1.1070, EPS-2018*

Contributors

J. Ongena¹, R. Bilato², V. Bobkov², J.M. Faustin³, A. Kappatou², V.G. Kiptily⁴, E. Lerche^{1,4}, M. Mantsinen^{5,6}, M. Nocente^{7,8}, M. Schneider⁹, D. Van Eester¹, M. Weiland², H. Weisen¹⁰, Y. Baranov⁴, J. Galdon-Quiroga¹¹, M. Garcia-Munoz¹¹, J. Gonzalez-Martin¹¹, K. Kirov⁴, J. Bielecki¹², S.A. Bozhenkov³, A. Cardinali¹³, C. Castaldo¹³, T. Craciunescu¹⁴, K. Crombé^{1,15}, A. Czarnecka¹⁶, R. Dumont¹⁷, P. Dumortier¹, F. Durodié¹, J. Eriksson¹⁸, R. Felton⁴, M. Fitzgerald⁴, D. Gallart⁵, L. Giacomelli⁸, C. Giroud⁴, M. Goniche¹⁷, J. Graves¹⁰, C. Hellesen¹⁸, P. Jacquet⁴, T. Johnson¹⁹, N. Krawczyk¹⁶, M. Lennholm^{20,21}, T. Loarer¹⁷, S. Menmuir⁴, I. Monakhov⁴, F. Nabais²², M.F.F.Nave²², J.-M. Noterdaeme^{2,15}, R. Ochoukov², H. Patten¹⁰, M. Porkolab²³, P. Schneider², S.E. Sharapov⁴, D. Valcarcel⁴, M. Van Schoor¹, J.C. Wright²³, S.J. Wukitch²³, JET Contributors^{*}, the ASDEX Upgrade Team[†], the EUROfusion MST1 Team

See the author list of X. Litaudon et al., Nucl. Fusion 57, 102001 (2017); ⁺ See the author list of H. Meyer et al., Nucl. Fusion 57, 102014 (2017)

- ¹ LPP-ERM/KMS, Brussels, TEC Partner, Belgium ² Max-Planck-Institut für Plasmaphysik, Garching, Germany ³ Max-Planck-Institut für Plasmaphysik, Greifswald, Germany ⁴ CCFE, Culham Science Centre, Abingdon, UK ⁵ Barcelona Supercomputing Center (BSC), Barcelona, Spain ⁶ ICREA. Barcelona, Spain ⁷ Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy
- ⁸ Istituto di Fisica del Plasma, CNR, Milan, Italy

- ⁹ ITER Organization, Route de Vinon-sur-Verdon, France
- ¹⁰ EPFL, Swiss Plasma Center (SPC), Lausanne, Switzerland
- ¹¹ University of Seville, Seville, Spain
- ¹² Institute of Nuclear Physics, PAS, Krakow, Poland
- ¹³ ENEA Centro Ricerche, Frascati Italy
- ¹⁴ NILPRP Bucharest, Romania
- ¹⁵ Dep. Applied Physics, Ghent University, Gent, Belgium ¹⁶ IPPLM, Warsaw, Poland

- ²⁰ European Commission, Brussels, Belgium

- ²³ MIT-PSFC, Cambridge, USA

Landau-Spitzer Award 2018, EU-US collaboration:

"For experimental verification, through collaborative experiments, of a novel and highly efficient ion cyclotron resonance heating scenario for plasma heating and generation of energetic ions in magnetic fusion devices." Further details: J. Ongena et al., APS-2018 (09 Nov. 2018; 09:30am)

¹⁷ CEA, IRFM, Saint-Paul-Lez-Durance, France ¹⁸ Dep. Physics and Astronomy, Uppsala University, Sweden ¹⁹ KTH Royal Institute of Technology, Stockholm, Sweden ²¹ JET Exploitation Unit. Culham Science Centre. UK ²² Instituto de Plasmas e Fusão Nuclear, IST, Portugal

- Three-ion ICRH schemes: a new set of minority scenarios (*n* = 1) for efficient heating of mixture plasmas, $\omega = \omega_{ci} + k_{||}v_{||}$
 - \rightarrow possibility to tailor achieved fast-ion energies
- Option 1: use fast NBI ions with large v_{\parallel} to resonate at the IIH layer
 - moderate acceleration of T-NBI or D-NBI ions with ICRH to maximize the Q-value and P_{fus} in D-T plasmas
 - large number of energetic passing ions \rightarrow
- Option 2: use thermal ions with an intermediate charge-to-mass ratio as resonant species, $(Z/A)_2 < (Z/A)_3 < (Z/A)_1$
 - heating intrinsic ⁹Be impurities in D-T plasmas \rightarrow
 - ICRH schemes for non-active plasmas in ITER \rightarrow
- Efficient technique for generating energetic ions needed for fast-ion studies
 - Application for W7-X: J. Faustin, PPCF 59, 084001 (2017) \rightarrow

Three-ion schemes extend the flexibility of using ICRH in fusion research

Main ions no. 1 Resonant ions (no. 3) Main ions no. 2

Selection of main three-ion ICRH scenarios

	Resonant ions	Main plasma ions	Scenario	Short scenario description
Option 1: using fast NBI ions	H⁰ NBI	⁴ He-H D-H T-H	⁴ He-(H _{NBI})-H D-(H _{NBI})-H T-(H _{NBI})-H	Heating and fast-ion studies in Heating and fast-ion studies in Heating and fast-ion studies in
	Dº NBI	H-D D- ³ He T-D	D-(D _{NBI})-H D-(D _{NBI})- ³ He T-(D _{NBI})-D	Heating and fast-ion studies: of Source of isotropic fusion alph Maximize Q and P _{fus} in JET
	T⁰ NBI	D-T T-⁴He H-T	Т-(Т _{NBI})-D Т-(Т _{NBI})-⁴Не Т-(Т _{NBI})-Н	Maximize <i>Q</i> and <i>P</i> _{fus} in JET Mimick T-NBI acceleration in n Heating and fast-ion studies in
Option 2: using thermal ions with an intermediate (<i>Z</i> / <i>A</i>) _I	³ He	H-D H-⁴He H-T	D-(³He)-H ⁴He-(³He)-H T-(³He)-H	Heating and fast-ion studies: J Heating and fast-ion studies in Heating and fast-ion studies in
	⁹ Be	D-T	T-(ºBe)-D	Bulk ion heating in D-T plasma
	⁴ He	H- ⁹ Be/Ar H-T	⁹ Be/Ar-(⁴He)-H T-(⁴He)-H	Non-active scenario for ITER a Fast ⁴ He studies in H-T plasma

Y. Kazakov et al. | IAEA-FEC 2018 | EX/8-1 | 22-27 October 2018

ind JET IS

is on JET and ITER

H-T plasmas

IET, Alcator C-Mod, AUG non-active plasmas

on-active JET plasmas H-T plasmas

lemonstrated on JET nas in D-³He plasmas

T-H plasmas

non-active plasmas **D-H plasmas**

Backup slides

Doppler-shifted H-NBI absorption in H plasmas on JET-ILW

JET-ILW #91618, *P*_{H-NBI} = 9MW: Plasma response: $\Delta T_{\rm e} \approx 0, \Delta W_{\rm p} \approx 0$

In single-ion plasmas, the left-hand polarized RF electric field component, E_{+} nearly vanishes at $\omega \approx \omega_{ci}$

Y. Kazakov et al. | IAEA-FEC 2018 | EX/8-1 | 22-27 October 2018

ICRH power: $0.7MW \rightarrow 2.2MW \rightarrow 3.2MW \rightarrow 4.2MW$

Doppler-shifted D-NBI absorption in D plasmas on JET-C:

T-(T_{NBI})-D three-ion scenario for DTE2 studies: accelerating T-NBI ions with n = 1 ICRH for maximizing the Q-value and P_{fus}

- TORIC modeling: D-T plasma with X[D] = 75%, X[9Be] = 1% and fast T-NBI ions
- Most of ICRH power absorbed by T-NBI ions in the vicinity of the IIH layer

29

Strongly peaked T_i , T_e and v_{rot} profiles at X[He] \approx 1.5-2%, similar to observations with (³He)-D scenario, M.J. Mantsinen, AIP Conf. Proc. 1689, 030005 (2015)

ICRF fast-ion and heating physics or effect caused by changes in the plasma transport?

- #34695: on-axis ³He resonance, lower X[He] $\approx 1\%$
- Sawtooth stabilization and reduced fast-ion losses after ³He puff

•
$$T_{\rm e}(0.2) \approx T_{\rm i}(0) \approx 3 {\rm keV}, \quad W_{\rm dia} \approx 200 {\rm kJ} \rightarrow 300 {\rm kJ}$$

TRANSP analysis: K. Kirov and Y. Baranov (CCFE) core-localized distribution of fast D ions in the vicinity of the ion-ion hybrid layer

TRANSP modeling of baseline discharge #92436 (K. Kirov, submitted to Plasma Phys. Control. Fusion): elongated distribution of fast ions along the IC resonance of H ions