

Diagnosing Implosion Performance at the NIF by Means of Neutron-Spectrometry and Neutron-Imaging Techniques

Presentation to 24th IAEA Fusion Energy Conference San Diego, CA, USA October 8-13, 2012

Johan Frenje on behalf of the NIF team Massachusetts Institute of Technology

Hir PSF(

Lawrence Livermore National Laboratory • National Ignition Facility & Photon Science

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Collaborators

MIT	LLNL		LANL	UR	GA	Imperial College
D. Casey	R. Ashabranner	S. Hatchett	G. Grim	J. Knauer	J. Kilkenny	J. Chittenden
M. Gatu Johnson	R. Bionta	R. Hollaway	N. Guler	V. Glebov	A. Nikroo	B. Appelbe
C. Li	E. Bond	O. Jones	J. Kline	T. Sangster	L. Reny	
M. Manuel	J. Caggiano	R. Kauffmann	G. Morgan	C. Abbott	M. Farrel	
H. Rinderknecht	M. Eckart	D. Koen	T. Murphy	R. Betti	D. Jasion	SNL
M. Rosenberg	D. Fittinghoff	O. Landen	D. Wilson	M. Burke		
F. Séguin	E. Hartouni	J. Lindl		T. Clark		R. Leeper
N. Sinenian	J. McNaney	D. Larson		N. Fillion		-
A. Zylstra	M. Moran	S. Le Pape		V. Glebov		
R. Petrasso	D. Munro	M. Mckernan		T. Lewis		
	S. Sepke	A. Mackinnon		O. Lopez-Raf	fo	
	P. Springer	E. Moses		J. Magoon		
	D. Bleuel	H. Park		P. McKenty		
	A. Carpenter	P. Patel		D. Meyerhofer		
	C. Cerjan	R. Prasad		B. Rice		
	J. Edwards	B. Remmingto	n	P. Radha		
	B. Felker	R. Rygg		M. Romanov	sky	
	S. Glenzer	V. Smalyuk		J. Szcepansk	i -	
		P. Springer		M. Shoup		
		R. Zacharias		R. Till		
		M. Yeoman				

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

The neutron data have been essential to the progress of the experiments on the NIF

- The neutron-spectrometry data indicate that the tuning campaigns have improved the implosion performance by ~50× since the 1st shot in Sept 2010.
- We have achieved a radial convergence of ~35, fuel ρR values up to ~1.3 g/cm², and inferred hot-spot pressures up to ~150 Gbar.
- The maximum pressure is ~2× lower than point design, and the observed neutron yields are 3-10× lower than expected.
- The pressure and yield deficits are most likely explained by higher than predicted fuel-ablator mix and ρR asymmetries often observed in the implosions.
- A path forward to address these issues has been defined.

The neutron spectrum is used to diagnose neutron yield (Y_n), ion temperature (T_i) and areal density (ρR)

Measurement of the detailed shape of the low-energy part of neutron spectrum provides 3D information about implosion

¹⁾ J.A. Frenje et al., these proceedings; to be submitted to Nucl. Fusion.

Primary and scattered neutrons are imaged to diagnose neutronsource size (R) and thickness of high-density shell (ΔR), resp.

Primary neutrons (n):

• *R* of neutron source

Scattered neutrons (n'):

• ΔR of high-density shell

JIF

Several neutron spectrometers and an imaging system have been fielded at various locations on the NIF

Spectra and images are now measured routinely on the NIF (Example: DT shot N120205)

The spectrometry data indicate that the tuning campaigns have improved the implosion performance by ~50× since Sept 2010

¹⁾ M .J. Edwards et al., PoP (2011); A.J. Mackinnon et al., PRL (2012).

²⁾ R. Betti et al., OV/5-3

Spectrometry and imaging data self-consistently indicate that the tuning campaigns have improved the convergence by ~2×

Inferred hot-spot pressure is $\sim 2 \times$ lower than point design, and yields are $\sim 3-10 \times$ lower than predicted

What's causing this pressure and yield deficit?

¹⁾ P. Springer et al., IFSA (2011).

The pressure and Y_n deficits can be explained partly by larger than predicted CH-ablator mixed into the hot spot

The higher-convergence implosions display more mix, which reduces T_i and Y_n . Other data indicate that the "mix-performance cliff" occurs at a remaining shell mass that is ~30-40% larger than the point design

The Y_n and pressure deficits can also be explained partly by the systematic low-mode ρR asymmetries often observed

When using the 6-10 MeV range, Spec-E and Spec-A nTOFs probe similar portion of the implosion, and provide similar ρR values

Johan Frenje – IAEA 2012

Need to address the observed higher-than-predicted levels of mix and low-mode ρR asymmetries

- Understand the origin and structure of mix and low-mode ρR asymmetries.
- Lower CR implosions (more 1D) should be examined and understood to improve the modeling capabilities before conducting the high CR implosions necessary for ignition.
- Engineering solutions and new diagnostic capabilities need to be implemented:
 - Implement in-flight 2D x-ray radiography of the ablator.
 - Implement in-flight Compton radiography of the fuel.
 - Implement a new nTOF-neutron spectrometer for probing ρR on the south pole.
 - Reduce size and/or patch up diagnostic holes and star burst, and reduce diameter of the fill tube to improve drive symmetry.

- The neutron-spectrometry data indicate that the tuning campaigns have improved the implosion performance by ~50× since the 1st shot in Sept 2010.
- We have achieved a radial convergence of ~35, fuel ρR values up to ~1.3 g/cm², and inferred hot-spot pressures up to ~150 Gbar.
- The maximum pressure is ~2× lower than point design, and the observed neutron yields are 3-10× lower than expected.
- The pressure and yield deficits are most likely explained by higher than predicted fuel-ablator mix and ρR asymmetries often observed in the implosions.
- A path forward to address these issues has been defined.

• NIF

In contrast to the 10-12 MeV *dsr* data, the 6-10 MeV *dsr* data show no " ρR asymmetries"

A single scattering model cannot explain the low-energy neutron spectrum in high- ρR implosions

MRS data for Cryo DT, Nov. 12, 2011

ho R asymmetries and multiple scattering may be important at energies below ~9 MeV, and will be considered

Neutron spectrum simulations indicate that multiple scatter is important in high ρR implosions

More sophisticated analysis of the neutron spectrum is currently being developed

The MRS measures the neutron spectrum, using the recoil technique combined with a magnetic spectrometer

J.A. Frenje et al., Phys. Plasmas 17, 056311 (2010)

The background in the *dsr* region is determined from DT exploding pushers, then subtracted to get *dsr* for DT cryo shots

Cryo DT, Nov. 12, 2011 DT Exp Push, Nov. 21, 2011

To gain insight about the implosions, a simple model can be used to infer hot-spot properties from emitted neutrons, X-rays and γ -rays

- More sophisticated model uses isobaric assumption (n~1/T)
- Allows 3D spatial profiles to be fit to match all observables
- Time dependence not yet included

From P. Springer et al., IFSA (2011).