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Abstract

The turbulence characteristics near the L-H transition in NSTX Ohmic
discharges are measured using the FMCW reflectometry and backscat-
tering techniques. The unique capabilities of this diagnostic combination,
i.e. sensitivity to the density provile as well as fluctuations up to kr~22 cm-1,
are utilized to document the correlation between dynamics of the edge
density gradient, turbulence correlation length, and the radial wavenumber
spectrum, near the L-H transition in NSTX. During the L-mode phase, a
broad band of turbulence (kr~2-10 cm-1) extends over a significant portion
of the edge-core from R=120 to 155 cm (ρρ=0.4-0.95). At the L-H transition,
turbulence is quenched across the measurable kr spectral range at the ETB
location, where the radial correlation length also drops from ~1.5 to 0.5 cm.
Close to the L-H transition, oscillations in the density gradient and edge
turbulence quenching become highly correlated. These oscillations are
also present in Ohmic discharges without an L-H transition, but are far less
frequent. Similar behavior is also seen near the L-H transition in NB-heated
discharges.

Supported by US DoE Contracts DE-FG03-99ER54527 and DE-AC02-09CH11466.



NSTX-UNSTX-U IAEA FEC 2012: Evolution of the Turbulence kr Spectrum Near the L-H Transition in NSTX Ohmic Discharges (EX/P7-21) S. Kubota October 12, 2012

Summary Slide



NSTX-UNSTX-U IAEA FEC 2012: Evolution of the Turbulence kr Spectrum Near the L-H Transition in NSTX Ohmic Discharges (EX/P7-21) S. Kubota October 12, 2012

Millimeter-Wave Diagnostics for FY2010 Campaign

26-40 GHz
Correlation

13-20 & 20-32 GHz
FMCW Reflectometers

33-50 GHz FMCW
Reflectometer

8-Channel
V-Band Quadrature

8-Channel
Q-Band Quadrature
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Motivation

• Connection between microinstabilities and transport remains a
critical issue for fusion plasma devices
- Formation of meso-scale structures such as zonal flows and streamers

thought to influence internal gradients and transport barrier formation
(e.g. L-H transition)

• Fluctuation measurements over a broad wavenumber range are
necessary
- Imaging diagnostics (i.e. GPI and BES) capture low-k

- Doppler backscattering used for intermediate-k

- Forward- and back-scattering at high-k

• Requires multiple diagnostics to operate simultaneously
- Each has different response to fluctuation spectrum

- Different temporal and spatial resolution

- Viewing same location (radially, toroidally, poloidally)?

- Background profiles?

• FMCW reflectometry and backscattering techniques can provide
many of these capabilities in a single diagnostic
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New Tool is Backscattering: Spatially-Resolved kr Spectrum

f3

f1f2f3

Conventional FM Reflectometry
Reflection from cutoff density

FM Radial Backscattering
Reflection from all locations

up to the cutoff density

• Density profile from cutoff reflection.
• Local k from density profile.
• Probed kr from Bragg Law:

Reflectometry/Backscattering
Radar Image
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Transformation of Radar Image to kr Spectrum

• Similar procedure in the language of image processing.
- Image warp.
- (τ,f ) to (kr,R) map or vice versa are the “warp grids” for forward or backward

mapping.
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• Revisit FM reflectometry (∆∆t ≤ 10 µµs, ne = 0.2-3.5x1013 cm-3)
- Density profile evolution: ne(R,t)

- Radial correlation lengths: Lcr(R,t)

- New analysis method: FM Backscatter
Spatially resolved kr spectrum from backscattering (≤22 cm-1): kr(R,t)

• Shape and evolution of the wavenumber spectrum can indicate
details of nonlinear processes governing turbulence and transport
- Spectral energy transfer and coherent structures

- Turbulence spreading

- Transport barrier formation

• L-H transition provides “easy” target
• Observations of interplay between turbulence and zonal flows

during L-mode phase of NB-heated H-mode discharges from
gas-puff imaging (GPI)
- ~3 kHz GAM-like oscillations

- Trigger mechanism(s) for L-H transition remains elusive

Target L-H Transition in NSTX Ohmic Discharges
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Ohmic H-Modes Targets for L-H Transition Studies

EFIT02
231 ms

BT0=3.5 kG

• Benefits of Ohmic discharges:
- No fast particle-driven modes to mask

turbulence spectrum
- No external momentum input
- Lack of NB-based diagnotics (CHERS,

MSE, BES, etc.)

• Discharge parameters:
BT=3.5 kG, Ip=800 kA, LSN, Deut.

• Edge density ears in H-mode limits
access to core.

L-mode

H-mode

MPTS
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BT=3.5 kG, IP=800 kA, LSN, Ohmic Discharges

SHOT 141751

H-Mode
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Ohmic H-Mode Discharge Profiles
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Precise L-H Transition Timing and ETB Position
Identified from Signal Strength

Divertor DααReflectometer
Signal Strength

• For H-mode edge,
- Turbulence reduction ->

specular reflection ->
stronger signal.

• t=234.64 ms

• ne=1.2x1013 cm-3
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LC
FS

t=234.6 ms L- to H-mode

t=240.0 ms H-mode

t=234.4 ms L-mode
t=230.0 ms L-mode

Density Profile Near L-H TransitionDensity Profile Contours

Density Gradient Steepens at ETB Location

• L-H transition occurs at t=234.64 ms
• ETB location is R=143-144 cm

- Density gradient sharply increases

• Oscillations prior to final L-H transition
- Density gradient sharply increases

ETB Radius
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Outline of Quasi-Simultaneous
FMCW Correlation Technique
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Correlation Length Change Near L-H Transition

t=-10 ms

t=-0.5 ms

• Turbulence radial correlation length decreases prior (<1 ms) to L- to H-
mode transition.
- Change only seen localized at ETB location R~144.5 cm.
- Utilizes FMCW reflectometers for radial correlations with <1 ms resolution.

- Correlated with drop in spectral intensity from kr backscattering (next slide).

ETB location
just before L-H
transition
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Lcr Decreases Locally at ETB Near L-H Transition

• (Low-k turbulence) radial correlation length drops at L-H transition
- Statistical method which requires ∆∆t ≥ 0.36 ms resolution

230.68 ms

234.42 ms

234.98 ms

228.18 ms

-6.46 ms before L-H

-4.04 ms

-0.24 ms

+0.34 ms after L-H
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kr Spectrum: “Well” at ETB Location Near L-H Transition

t=228.00-228.36 ms
L-Mode

t=234.80-235.16 ms
H-Mode

ETB Location
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Radar Images Show Edge Density Profile
Oscillations During L-Mode Phase

Time

L-Mode

H-Mode

“H-Mode-Like”

“H-Mode-Like”

“H-Mode-Like”

“H-Mode-Like”

“H-Mode-Like”
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At ETB Radius Ln Correlated With
Variations in kr Spectral Power

• At R=143~144 cm (ETB location), density scale length is correlated
with variation of power in kr spectrum.
- Amplitude and degree of correlation increases closer to L-H transition.

- Could be sign of underlying flow/turbulence dynamics.

kr spectral
power [A.U.]
at “well”

Density Scale Length

H-Mode
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• Evolution of turbulence and density profile characteristics near the
L-H transition measured using several mm-wave diagnostics
- New technique: FMCW backscattering for kr spectrum measurements

• Localized (to ETB) changes in turbulence at the L-H transition:
- Drop in δδn/n

- Reduction in radial correlation length

- Steepening of the density gradient

- kr-spectrum spatial “well” develops

• Oscillations in L-mode phase:
- Correlation between kr-spectrum well and steepening/relaxing of edge

gradients

- Could be indicative of flow/turbulence dynamics
- Further modeling as well as comparison with GPI measurements necessary

• Similar to behavior seen in NB-heated H-mode discharges
- Oscillations in L-mode phase seem to be fairly ubiquitous

Summary of Observations
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Future Directions

• Backscattering results still qualitative
- Theoretical and numerical studies under way

- Spatial and wavenumber resolution, spectral shape, amplitude, etc.

- Multi-dimensional GPU-based full-wave codes to address the problem
in 1-D and 2-D

• “New” method of looking at “old” data
- FMCW reflectometry a common diagnostic on many devices

- Advanced signal analysis techniques are necessary to process radar
image

• ITER relevance
- Recent numerical studies have indicated Bragg backscattering could

have deleterious effects for profile reflectometry
- Begin to look at this problem experimentally

• Strength of diagnostic should be in edge-core measurements
- Broad radial coverage for L-mode plasmas

- Data mining of past NSTX shots
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Review of FMCW (Profile) Reflectometry
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Signal Processing Technique

• Prescription for creating backscattered signal intensity image in (kr,R).
- Create (τ,f ) image to determine TOF curve for profile inversion.
- Abel invert τ(f ) to create ne(R).
- Using ne(R), calculate (τ,f ) points corresponding to a (kr,R) grid.
- Since f(t)=f0+α t, localize raw signal in time and frequency (∆t,∆f ). Determine

intensity of this signal.
- Determine corresponding uncertainty (∆k,∆R).

• Effectively, this is using the backward mapping.
- Most image processing algorithms do this as well to insure even resolution in the

transformed image.
- At higher IFs (better resolution for the original image), may be able to use the

forward mapping on the original image directly.
- Technical difficulties with reflectometer hardware for doing this:

> More difficult to maintain linear frequency sweep.
> Nonlinearities cause artifacts.

• For non-monotonic profiles where profile inversion cannot be done, MPTS
density profiles can be substituted.
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Inaccessible Regions of (τ,f ) and (kr,R)

• All profiles.
- Upper limit of kr(R)=4π fmax/c µ(ne(R),fmax).
- Upper limit of τ(f )=τ(ne,cutoff(f )).

• Monotonic density profiles.
- Lower limit of kr(R)=0.

• Non-monotonic density profiles.
- No reflection from ne,cutoff(f ) hence kr(R)=0 inaccessible.

Contours of Equal k

∆kr=1 cm-1

k
r
=22 cm-1

k
r
=0 cm-1

Inaccessible

Contours of Equal k and R

∆kr=1 cm-1,∆R=5 cm
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Conceptual View of FMCW Backscattering
(Single-Frequency Case)

• Assume we know ne(R) from FMCW reflectometry. Consider wave-packet
centered around f.

• Assume backscattered reflection from each point along path.
- Bragg matching condition for backscattering: kr=2 k0 µ(ne(R), f)

- Time-of-flight (TOF) monotonically increasing towards cutoff.
- Probes wavenumbers between k=2 k0=4π f/c (2x vacuum wavenumber) at edge

and k=0 at cutoff.

f=30 GHz
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Conceptual View of FMCW Backscattering
(Multiple- or Swept-Frequency Case)

• Consider FMCW source (range of swept frequencies or cutoff densities).

• Provides a signal intensity map from (τ,f ) to (kr,R).
- One-to-one mapping.
- If one knows ne(R), this mapping must be unique (stated here without proof).

• Method is similar to conventional 180º collective backscattering, but
- Scattered/reflection location is discriminated by time-of-flight and frequency.
- Probed wavenumber is discriminated by location and frequency.

kr vs Radius and FrequencyTOF vs Radius and Frequency
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GPGPU-Assisted Full-Wave Codes

• General-purpose computing on graphics processing units (GPGPU)
- Utilizes massively parallel architecture of GPU cards

• Examples below with NVIDIA Tesla C870 GPU Computing Board
- 128 streaming processor cores (16 multiprocessors)
- Memory size: 1536 MB
- Double wide, PCI Express x16
- Power requirement: 171 Watts
- Compute capability 1.0

• CUDA for C programming environment
- Wrapper program in IDL for loading inputs
- Shared library for compiled kernel programs called from IDL

• Significant acceleration of computation speed for 2-D
- x20 acceleration for typical X-mode computation

- x15 acceleration for typical O-mode computation

• Modulation of wave source
- 2-D pulsed radar
- 1-D pulsed radar and FMCW
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