### Impact and mitigation of disruptions with th ITER-like wall in JET

 $\mathbf{\mathbf{x}}$ 

M. Lehnen and JET EFDA contributors 24<sup>th</sup> IAEA Fusion Energy Conference 2012

# EFJET ITER-like wall

The choice of material of plasma facing components affects

- heat load capability
- disruption process

main chamber beryllium

heat load limit: ~25 MJm<sup>-2</sup>s<sup>-0.5</sup> low radiation efficiency

#### divertor tungsten

heat load limit: ~50 MJm<sup>-2</sup>s<sup>-0.5</sup> high radiation efficiency





# EFJEA Carbon wall

The choice of material of plasma facing components affects

- heat load capability
- disruption process

all components **carbon** 

heat load limit: ~50 MJm<sup>-2</sup>s<sup>-0.5</sup> high radiation efficiency





### EFJET Disruption in a nutshell



Carbon wall

fast thermal quench

fast current decay

high radiation up to GW range

vertical displacement

halo currents



### **Disruption in a nutshell**



# EFJET Outline

The fundamental change with the **new ITER-like wall** is the **absence of radiating impurities** during the disruption process.

### Outline

- energy balance and role of radiation
- time scales (current quench)
- electro-magnetic loads
- heat loads
- mitigation by massive gas injection



### **Energy balance**



# EFJET Radiation







# EFJET Radiation





# EFJET Radiation





### **Timescales**

TRILATERA



#### **Electro-magnetic loads arise from**







### Electro-magnetic loads



M. Lehnen, 24<sup>th</sup> IAEA Fusion Energy Conference, San Diego, 2012

TRILATERAL

### Electro-magnetic loads





## EFFET Electro-magnetic loads



### Halo currents

maximum I<sub>halo</sub> determined by competition between plasma resistive timescale and vertical growth rate

#### large vertical displacement

closed symbols:  $\Delta z > 0.4$ m at 70%I<sub>P</sub>



# EFFET Electro-magnetic loads



### Halo currents

maximum I<sub>halo</sub> determined by competition between plasma resistive timescale and vertical growth rate

#### *large vertical displacement* closed symbols: $\Delta z > 0.4m$ at $70\%I_P$

**ITER-like wall**: peak  $I_{H}/I_{P}$  at longer  $\tau_{cQ}$ 

> TRILATERAL TRILATERAL EUREGIO CLUSTER

# Electro-magnetic loads

#### vessel displacement increases with impulse





# Electro-magnetic loads

#### vessel displacement increases with impulse



current asymmetries





# **CQ-VDE** deposits high fraction of W<sub>mag</sub> on upper PFCs



#### maximum temperature ~1050°C

(slow time resolution of 20ms)

modest magnetic energy:  $W_{mag} = 14.3MJ$  (2.2MA) low thermal energy:  $W_{th} = 1.5MJ$ 

> TRILATERAL EUREGIO CLUSTER

#### CQ-VDE deposits high fraction of $W_{mag}$ on upper PFCs

**Heat Loads** 



#### maximum temperature ~1050°C (slow time resolution of 20ms)

modest magnetic energy:  $W_{mag} = 14.3MJ$  (2.2MA) low thermal energy:  $W_{th} = 1.5MJ$ 



#### Heat load impact during current quench

**Heat Loads** 



#### Heat load impact during current quench

**Heat Loads** 



M. Lehnen, 24<sup>th</sup> IAEA Fusion Energy Conference, San Diego, 2012

TRILATERA

### EFJET Massive Gas Injection (MGI)

#### injected species

He,  $D_2$ , Ne, Ar, 10%Ar or 10%Ne in  $D_2$ 

number of particles injected before TQ 0.1 -  $20 \times 10^{22} \approx 0.2 - 40 \times N_{e}$ 

### MGI is applied now with the ILW in closed loop for $I_P \ge 2.5MA$

rightarrow E. Joffrin et al. EX/1-1





# EFJET MGI - Radiation



high level of radiation

 $W_{\mbox{\tiny rad}}$  /  $W_{\mbox{\tiny plasma}}$  ~ 70% and 100%

Scatter

species, injection rate, timing

TRILATERAL EUREGIO CLUSTER

### EFJET MGI - Timescales





### EFJET MGI - Electro-magnetic loads

halo and sideways impulse negligible / force from eddy currents remains





### EFJET MGI - Heat loads

#### heat loads reduced due to high W<sub>rad</sub>







### EFJET MGI - Radiation efficiency

#### Radiation efficiency with increasing thermal energy



### EFFET Disruptions with the ITER-like wall -What have we learned for ITER so far?

### Radiation

- without carbon PFCs > low radiation
- energy dissipation through conduction/convection dominates

### Loads

- magnetic energy contributes significantly to heat loads (in addition to TQ)
   $W_{mag} \leq 500 \text{ MJ}$  (ITER, 15MA, inside VV)
- stresses on vessel are increased due to longer impact of forces

### Mitigation

- Massive gas injection controls radiation level
- 10%Ar in D<sub>2</sub> efficiently mitigates heat loads and electro-magnetic loads MGI is now mandatory in JET for  $I_P \ge 2.5MA$
- Iow mitigation efficiency during thermal quench (ITER requires > 90%) Iocation of injection, scaling with injected amount?
  - → 2<sup>nd</sup> valve at outer midplane in 2013



# EFFET Impact and mitigation of disruptions with the ITER-like wall in JET

M. Lehnen<sup>1</sup>, G. Arnoux<sup>2</sup>, S. Brezinsek<sup>1</sup>, J. Flanagan<sup>2</sup>, S.N. Gerasimov<sup>2</sup>, N. Hartmann<sup>1</sup>, T.C. Hender<sup>2</sup>, A. Huber<sup>1</sup>, S. Jachmich<sup>3</sup>, U. Kruezi<sup>2</sup>, G.F. Matthews<sup>2</sup>, J. Morris<sup>2</sup>, V.V. Plyusnin<sup>4</sup>, C. Reux<sup>5</sup>, V. Riccardo<sup>2</sup>, B. Sieglin<sup>6</sup>, P. de Vries<sup>7</sup> and JET EFDA contributors<sup>\*</sup>

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

<sup>1</sup>Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Jülich, Germany

<sup>2</sup>Euratom/CCFE Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

<sup>3</sup>Laboratoire de Physique des Plasmas-Laboratorium voor Plasmafysica, Association EURATOM-Belgian State, ERM/KMS, B-1000 Brussels, Belgium

<sup>4</sup>Instituto de Plasmas e Fusão Nuclear/IST, Associacao EURATOM-IST, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

<sup>5</sup>École Polytechnique, LPP, CNRS UMR 7648, 91128 Palaiseau, France

<sup>6</sup>Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, 85748 Garching, Germany <sup>7</sup>FOM institute DIFFER, Association EURATOM-FOM, P.O.Box, 1207, 3430BE, Netherlands

\*see the Appendix of F. Romanelli et al., Proceedings of the 24<sup>th</sup> IAEA Fusion Energy Conference 2012, San Diego, US

