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Challenge 

Presented by A. René Raffray 
Blanket Section Leader; Blanket Integrated Product Team Leader  

ITER Organization, Cadarache, France  

With contributions from B. Calcagno1, P. Chappuis1, Zhang Fu1, Chen  
Jiming2, D-H. Kim3, S. Khomiakov4, A. Labusov5, A. Martin1, M. 
Merola1, R. Mitteau1, S. Sadakov1, M. Ulrickson6, F. Zacchia7,  

and all BIPT contributors 

1ITER Organization; 2SWIP, China ITER Domestic Agency; 3NFRI, ITER Korea; 4NIKIET, RF ITER Domestic 
Agency; 5Efremov, RF ITER Domestic Agency; 6SNL , US ITER Domestic Agency; 7F4E, EU ITER 

Domestic Agency 

24th IAEA Fusion Energy Conference – IAEA CN-197, San Diego, CA, October 8-13, 2012 

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization 



24th IAEA Fusion Energy Conference, San Diego, CA, October 8-13, 2012 Slide 2 

Blanket Effort Conducted within BIPT  
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  and	
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Blanket System Functions 
Main functions of ITER 
Blanket System: 

•  Exhaust the majority of 
the plasma power. 

•  Contribute in providing 
neutron shielding to 
superconducting coils. 

•  Provide limiting 
surfaces that define the 
plasma boundary during 
startup and shutdown. 
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Blanket System in Numbers 
Number	
  of	
  Blanket	
  Modules:	
   	
   	
  440	
  
Max	
  allowable	
  mass	
  per	
  module: 	
  4.5	
  tons	
  
Total	
  Mass:	
   	
   	
   	
   	
   	
   	
   	
  1530	
  tons	
  

First	
  Wall	
  Coverage:	
   	
   	
   	
   	
   	
  ~600	
  m2	
  	
  

Materials:	
  
-­‐ 	
  Armor:	
   	
   	
   	
   	
   	
   	
   	
  Beryllium	
  
-­‐ 	
  Heat	
  Sink:	
   	
   	
   	
   	
   	
   	
  CuCrZr	
  
-­‐ 	
  Steel	
  Structure: 	
   	
   	
   	
   	
  316L(N)-­‐IG	
  

Max	
  total	
  thermal	
  load: 	
   	
   	
   	
  736	
  MW	
  

Cooling	
  water	
  condi8ons:	
   	
   	
   	
  4	
  MPa	
  and	
  70°C	
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Impact of Interface Requirements on 
Blanket Design 

•  Interface requirements impose challenging demands on 
the blanket in particular since the blanket is in its final 
design phase whereas several major interfacing 
components are already in procurement. 

•  Such demands include: 
 -  Accommodating plasma heat loads on FW 
 -  Maintaining acceptable load transfer to the vacuum vessel 
 -  Providing sufficient shielding to the vacuum vessel and TF coils 
 -  Accommodating the space allocations for in-vessel coils and    

 manifolds  

•  These are highlighted in subsequent slides as part of the 
blanket design description.	
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•  The blanket is a major contributor to neutron 
shielding of the coils and vacuum vessel.  

•  E.g. the integrated heating in the toroidal field 
coil needs to be maintained to <14 kW.  

•  To that aim, two blanket-related modifications 
were introduced compared to CDR profile:   
-  a flat inboard profile  
-  an addition of 4 cm to mid-plane radial thickness  
-  a reduction of the vertical gaps between inboard 

SB’s from 14 to 10 mm.  

•  This is estimated to result in a TF coil nuclear 
heating in the range 13-14 kW. More detailed 3-D 
neutronics analyses are planned to confirm this.  

Inboard Module Shape and Size Optimized for 
Neutron Shielding of VV and TF Coil 

•  A reduction of the thickness of BM 1 also results in a corresponding 
reduction in the EM loads on the VV, consistent with the vacuum vessel load 
specifications, as discussed later 
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I-shaped beam to accommodate poloidal torque 

Design of First Wall Panel Impacted by 
Accommodation of Plasma Interface Requirements  
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First Wall Shaping at Different Locations 

Inboard BM	
  #1-­‐6	
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  &	
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Top BM	
  #7-­‐10	
  
Secondary	
  divertor	
  
region	
  
Toroidal	
  &	
  poloidal	
  
shaping	
  

Outboard 
BM	
  #11-­‐18	
  
Outboard	
  
LFS	
  start-­‐up/ramp-­‐
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•  Shaping design accommodates 
 singular locations: 
 -  HNB ports 
 -  NB Shine-through 
 -  Ports 
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First Wall Panels: Design Heat Flux 

•  218 Normal heat flux panels   EU 
•  222 Enhanced heat flux panels   RF, CN 
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First Wall Finger Design 

SS	
  Back	
  Plate	
  

CuCrZr	
  Alloy	
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Be	
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Normal Heat Flux Finger: 
•  q’’ = ~ 1-2 MW/m2  
•  Steel Cooling Pipes 
•  HIP’ing 

Enhanced Heat Flux Finger: 
•  q’’ < ~ 5 MW/m2  
•  Hypervapotron 
•  Explosion bonding (SS/CuCrZr)  + 

brazing (Be/CuCrZr) 
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Shield Block Design 

•  Slits to reduce EM loads and minimize thermal expansion and bowing  
•  Poloidal coolant arrangement. 
•  Cooling holes are optimized for Water/SS ratio (Improving nuclear shielding 

performance). 
•  Cut-outs at the back to accommodate many interfaces (Manifold, Attachment, 

In-Vessel Coils). 
•  Basic fabrication method from either a single or multiple-forged steel blocks 

and includes drilling of holes, welding of cover plates of water headers, and 
final machining of the interfaces.  
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•  4 flexible axial supports 
•  Keys to take moments and forces 
•  Electrical straps to conduct current to vacuum vessel 
•  Coolant connections 

Shield Block Attachment 
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Flexible Axial Support 

•  4 flexible axial supports located at the rear of SB, where nuclear irradiation is lower.  
•  Compensate radial positioning of SB on VV wall by means of custom machining.  
•  Adjustment of up to ±10 mm in the axial direction and ±5 mm transversely (on key pads) 

built into design of the supports for custom-machining process. 
•  Cartridge and bolt made of high strength Inconel-718 
•  Designed for 800 kN preload to take up to 600 kN Category III load. 

FSP for testing (NIKIET, RF)	
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Toroidal Forces 

Poloidal Forces 

Shear Keys Used to Accommodate 
Moments from EM Loads 
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Keys in Inboard and Outboard Modules 
•  Each inboard SB has two inter-modular 

keys and a centering key to react the 
toroidal forces. 

•  Each outboard SB has 4 stub keys 
concentric with the flexible supports. 

•  Bronze pads are attached to the SB and 
allow sliding of the module interfaces 
during relative thermal expansion.  

•  Key pads are custom-machined  to 
recover manufacturing tolerances of the 
VV and SB. 

•  Electrical isolation of the pads through 
insulating ceramic coating on their 
internal surfaces.  
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Shield Block and Attachment Designed to Respect Pre-
Defined Load from Vacuum Vessel load Specifications 

•  Optimizing blanket design (radial 
thickness and slitting) to reduce EM 
loads based on the following analysis: 
-  DINA analysis of disruptions and VDEs 
-  Eddy and halo analysis to obtain 

superposition of wave forms 
-  Dynamic analysis of BM structural 

response using ANSYS (NIKIET) 

 •  For example, results for BM 1 under a 
downward VDE (load category II) for 
gaps of 0.375 mm at side of inter-
modular key pads and 0.75 mm at side 
of toroidal centering key pads, and with 
a friction coefficient of 0.4.  
-  The axial loads are compatible with those 

in the VV load specifications (500 kN)  
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Example Analysis of Inter-Modular Key 

•  Analysis of the inter-modular keys indicate stresses above 
yield (~172 MPa at 100°C) in the case of Category III load.  

•  Limit analysis then performed to check margin. 
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Limit Analysis of Inter-Modular Key 
•  Reasonable load factors of 1.5 for 

the pads and 1.9 for the neck of the 
key are obtained based on limit 
analysis under Category III load 
 with 5% plastic strain. 
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Interface with Blanket Manifold and ELM Coils 
•  A multi-pipe manifold configuration has been chosen, with 

each pipe feeding one or two BM’s  
 -  Higher reliability due to minimization of welds and utilization of 

 seamless pipes. 
-  Superior leak localization capability due to larger segregation of 

 cooling circuits. 
-  Elimination of drain lines. 
-  Reasonable cost (well-established technologies)  

•  Three sets of in-vessel ELM control coils per outboard sector 
to control ELMs by applying an asymmetric resonant magnetic 
perturbation to the plasma surface.  

•  BMs to be designed with cut-outs to accommodate these 
space reservations. 

Multi-pipe Manifold 
Configuration 	
  

Example 
outboard SB 12 
with manifold 
and ELM coil 

cut-outs	
  

ELM 
coils	
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Supporting R&D 
•  A detailed R&D program has been planned in support of 

the design, covering a range of key topics, including:  
 -  Critical heat flux (CHF) tests on FW mock-ups.  
 -  Experimental determination of the behavior of the attachment and 

 insulating layer under prototypical conditions. 
 -  Material testing under irradiation.  
 -  Demonstration of the different remote handling procedures.  

•  A major goal of the R&D effort is to converge on a 
qualification program for the SB and FW panels.  
 -  Full-scale SB prototypes (KODA and CNDA).  
 -  FW semi-prototypes (EUDA for the NHF FW Panels, and RFDA and 

 CNDA for the EHF First Wall Panels). 
 -  Qualification tests include: He leak test, pressure test, FW heat flux  

 test 
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Mock-Ups and Prototypes Are Being Manufactured as Part of 
the Qualification Programs 

Shield 
Block 
by 
KODA 

First 
Wall by 
EUDA 

First 
Wall by 
RFDA 
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Summary 
•  The Blanket design is extremely challenging, having to 

accommodate high heat fluxes from the plasma, large EM loads 
during off-normal events and demanding interfaces with many 
key components (in particular the VV and IVC) and the plasma.  

•  Substantial re-design following the ITER Design Review of 
2007. The Blanket CDR and PDR have confirmed the 
correctness of this re-design. 

•  Effort now focused on finalizing the design work . 

•  Parallel R&D program and formal qualification process by the 
manufacturing and testing of full-scale or semi-prototypes. 

•  Key milestones: 
-  Final Design Review in spring 2013.  
-  Procurement to start in late 2013. 


